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Preface

The research presented in this document is a synthesis of (1) existing theories

as they were originally proposed, (2) existing theories modified or extended to be

consistent with the current analysis, and (3) new work formulated by the author

over the past three years. In an attempt to make the text of the document cohesive

and smooth, these three areas are occasionally blended together for the purpose of

forming a single consistent and comprehensive idea. To clarify, the material pre-

sented in chapters three through five and appendices C through I represents work

accomplished as part of the current research except for the introductory shear-lag

work [Eqs (3.1) through (3.11); the interface debonding criterion (section 3.2.2); the

development of the frictional slip distances for a completely debonded system (sec-

tion C.1) and, of course, instances where previous works from different authors are

appropriately referenced.

Also, at this point and time, a note on some terminology is appropriate. In an

attempt to be consistent with the literature, the notation ri, ri(x) and Ti(N) are used

independently. The parameter 7-i is the interface shear stress which develops within

regions where the fiber/matrix constituents have debonded. Furthermore, this stress

is assumed to be of constant magnitude within each loading and unloading cycle in

order to make the analysis tractable as is common to the literature. Within regions

where the fiber and matrix remain physically bonded, the interface shear is denoted

Ti(x) since it varies as a function of the axial coordinate x. The formulation of these

stresses, Ti and Ti(x), as well as their mathematical representations are fundamentally

different and should not be confused. In addition, when considering fatigue loading

environments, the interface shear 7i is allowed to vary between loading cycles and is,

therefore, denoted with the term i(N) to emphasize its dependence on the loading

cycle, N.

iv



Finally, phrases such as "current analysis" and "present model" are intended

to indicate work accomplished by the author over the past three years and are not

intended to be synonymous with "recent" or "up to date" work accomplished by

other authors.

James P. Solti
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Abstract

Ceramic matrix composites exhibit a remarkable increase in strain-to-failure

as compared with their monolithic counterparts. The incorporation of the fiber-

reinforcement phase into the brittle matrix leads to microstructural interactions

which reduce the propensity for catastrophic failure of the laminate. However, ce-

ramic composites are energetically prone to the formation of multiple matrix cracks

prior to complete laminate failure. This, combined with the inherent complexities

and stochastic nature of failure in non-homogeneous materials, makes the modeling

of ceramic matrix composites quite difficult.

The purpose of the research undertaken during this doctoral program and

which is detailed in this manuscript is to develop a methodology for predicting the

evolution of these damages, as well as the resulting material behavior for fiber-

reinforced ceramic matrix composites. In particular, the response of unidirectional

and cross-ply laminates when subjected to quasi-static, repeated and fatigue loadings

is considered. Towards this end, a set of failure criteria for estimating the progression

of microstructural damages and a representative model based on the one-dimensional

shear-lag formulation are presented.

The failure criteria introduced in this document are formulated in a manner

that is amenable to a variety of solution techniques. The damages considered in the

analysis include matrix cracking, fiber/matrix interface slip and debonding, fiber

failure and fiber pull-out. The criterion adopted to govern the initiation and evolu-

tion of matrix cracks within the ceramic matrix focuses on the instantaneous strain

energy of the matrix, whereas the extent of interface debonding is determined in a

more traditional manner via a maximum stress criterion. Finally, the evolution of

fractures within the fibers is assumed to follow a Weibull type failure distribution

where all Weibull parameters are determined explicitly from the analysis except for
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the statistical modulus which is determined empirically owing to the variability of

failure in different composite systems.

The stress-strain response under monotonic tensile loading, the fatigue life

(S-N) relationship, and stress-strain hysteresis under cyclic loading obtained from the

present analytical methodology are compared with their experimental counterparts.

In all cases, the predicted material behavior is consistent with the experimental data.

Modeling of the stress-strain hysteresis requires estimates for the extent of frictional

sliding along the fiber/matrix interface. Therefore, formulations of frictional slip for

a partially bonded and debonded interface are accomplished herein. Previously, only

the fully debonded case was considered. In addition, an analytical approach which is

required to capture the continuous development of permanent strain, as experienced

under fatigue loading conditions, is developed and presented in this manuscript.

The latter allows for the strain ratchetting behavior observed during the fatigue

cycling. Degradation of the fiber/matrix interface resulting from frictional wear is

also considered.

As expected, the interface plays a dominant role in determining the evolutions

of damages and ultimately the material response itself. In particular, the control-

ling properties are the frictional shear resistance along debonded regions and the

bonding strength within fully constrained (bonded) areas. Both parameters may be

determined with the current analysis. Moreover, these interface properties deter-

mine the strength of coupling between the matrix cracking and interface debonding

damage modes, and also the stress transfer rate between the constituents. Under

fatigue type loadings, since the properties of the interface can change as a result of

frictional wear, the mechanical behavior of the laminate can be significantly altered

during conditions of repeated loadings. In addition, the interface degradation allows

additional damages to develop as a function of the loading cycle. These are unique

phenomena associated with ceramic matrix composites.



This study provides a consistent, systematic and comprehensive methodology

for investigating the behavior of unidirectional and cross-ply ceramic matrix com-

posites when subjected to quasi-static, repeated and fatigue loading. The developed

models and failure criteria which comprise the present analysis illustrate the proce-

dure for employing analytic solutions for modeling numerous complex mechanisms

such as those observed in fracture of brittle composites. Furthermore, this study

illustrates that damages such as fiber fracture, interface slip and fiber pull-out can

be successfully modeled for a partially bonded interface in fiber-reinforced compos-

ites. These permit stress-strain hysteresis and strain ratchetting behaviors to be

modeled, whereas in the past these mechanisms were not considered in such an anal-

ysis. Finally, this study provides a means for evaluating many interface properties

such as the fiber/matrix bond strength, the interface frictional shear resistance, the

degradation in shear under fatigue loadings and the evolutions of interface debonds.

This is significant since such data are difficult to obtain experimentally.



MODELING OF PROGRESSIVE DAMAGE IN

FIBER-REINFORCED CERAMIC MATRIX COMPOSITES

L Overview

This chapter serves as a general overview for some of the intricacies involved

with the science and engineering of fiber-reinforced ceramic matrix composites and

the proposed study. The chapter is divided into three sections. First, a brief discus-

sion of monolithic ceramics and ceramic matrix composites is presented, including

the various damage modes inherent to these materials and the importance of mod-

eling these damages. The second section reviews several failure criteria which have

been used in predicting the evolution and impact of the microstructural damages

on the structural integrity of the ceramic composites. Finally, the third section out-

lines the present study to model the failure progression and material response of the

fiber-reinforced ceramic composite under various loading conditions.

1.1 Introduction

The technological advancement for many structural components is contingent

upon the continued development of high-performance materials which can survive in

demanding operating environments. As a result, the demand for advanced materials

in aerospace and other high-temperature applications has steadily increased over the

past few decades. Unfortunately, the supply has not maintained the pace. A good

example is the limited success researchers have had in designing and manufacturing

advanced supersonic and hypersonic aerospace vehicles. Much of the progress in

this area has been hampered by the non-availability of structural materials which

can withstand the necessary operating conditions since in many cases, materials in
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today's advanced aerospace arena are required to operate in environments where

severe thermal-mechanical and fatigue loadings can be expected.

Ceramic materials are a natural fit for these environments as a result of their

innate resistance to heat, chemicals and wear [15,52]. What makes ceramic materials

so appealing is that they possess high strength and modulus even at elevated temper-

atures. The service temperature limits for today's ceramic materials, for example,

are approaching 1600'C. This is compared to 10000C for current super-alloys, 7500C

for stainless steels, and 4000C for advanced polymeric composite [25]. Ironically

however, the phenomenon which provides the ceramic material with its exceptional

strength and stiffness also causes the ceramic to be very brittle. As a result, when

monolithic ceramics fail, they typically fail catastrophically and without warning.

Hence, these materials are not amenable to many structural applications.

With the addition of high-strength reinforcing fibers, however, the overall

strength of the ceramic, as well as its fracture toughness, can be increased sig-

nificantly. For this reason, ceramic matrix composites (CMCs) have received a great

deal of attention. Unfortunately, since the fiber/matrix constituents are themselves

brittle materials, CMCs are still susceptible to fracture. In particular, CMCs are

energetically prone to the formation of multiple matrix cracks within the compos-

ite structure [8,126]. This makes them difficult to model. The fractures form first

within the matrix and not the fiber since typically the strain-to-failure of the ceramic

matrix is less than that of the reinforcing fibers. Furthermore, multiple cracks can

form since laminate failure is prevented by fibers which continue to bridge the crack

planes. In this manner, the fibers provide the CMC with improved toughness and

perhaps even more importantly the observed gradual non-catastrophic failure mode.

As would be expected, however, an increase in material compliance is accom-

panied with the formation of the matrix cracks [65]. Moreover, this relaxation in

stiffness can be observed as changes in the slope of the laminate's stress-strain re-

sponse. In actuality, since the formation and growth of the matrix cracks occurs over
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a finite stress range, the shape of the stress-strain curve may be quite non-linear in

appearance due to the varying composite compliance over this stress range. For this

reason, the shape of the stress-strain curve is a good indicator of the extent of com-

posite damage. Hence, modeling the stress-strain response of CMCs is a challenging

task due to the complex interaction effects between the damaged constituents. This

is accomplished only by modeling the presence and influence of the matrix cracks

and other damages.

Not much needs to be said about the importance or utility in formulating

models which provide insight into the probable behavior of a material under var-

ious loading conditions. Models, whether analytical, numerical or empirical, can

save countless man-hours and monies by permitting "papers studies" to replace or

supplement experimental analyses. There is no need to manufacture and test each

material variant. In order to model a material, such as a ceramic matrix composite,

which has several prominent damage modes, two items are required. First, a repre-

sentative model or volume element, and constitutive relations are needed. Second, a

set of failure criteria for each damage mode must be available in order to determine

the extent of damage within the composite microstructure. Since the formulations

of the model and the failure criteria are typically independent, researchers can mix

and match as necessary.

Since the early 1970's, a large number of models and failure criteria have been

presented for analyzing the behavior of ceramic composites, and these will be re-

viewed in chapter two. Many of these studies are based upon the theory of microme-

chanics in which strength-of-material solutions are applied to unit-cells consisting

typically of only a single fiber and surrounding matrix. The advantage of the mi-

cromechanics approach is that the mechanical response of the laminate may be easily

obtained since this approach avoids many of the subtle intricacies and complexities

associated with the stochastic nature of brittle fracture in non-homogeneous mate-

rials. More detailed fracture mechanics techniques may provide a better depiction
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for the evolution of damage within the composite; however, they are limited in their

ability to model complex loading conditions due to the inherent complexity of the

analysis.

1.2 Background

As mentioned previously, when cracks form within the matrix of a ceramic

matrix composite, the reinforcing fibers prevent catastrophic failure if they con-

tinue to bridge across the crack plane. Moreover, it has been well established that

near these bridging fibers, several microstructural interactions occur between the

composite's constituents which promote toughness through load transfer and energy

dissipation [18,52]. Clearly, the proper modeling of the composite's behavior resides

in the ability to understand and capture these phenomena. To this end, a number of

micromechanics analyses have been developed for predicting the onset and progres-

sion of failure within brittle composites [8,37,113,201]. In what is now considered

a classical analysis, Aveston, Cooper and Kelly (ACK) discussed in detail the "en-

ergetics of multiple fracture" in brittle composites [8]. This work has fueled similar

studies for over twenty-five years.

Many of the models presented over this time period are based upon the clas-

sical shear-lag formulation presented by Hedgepeth [71]. The approach parallels the

method employed by Cox who first investigated the influence of a single short fiber

embedded in an infinite medium [32], but can be adapted to investigate the response

of unidirectional and cross-ply laminates if an equivalent damage state for the lam-

inate can be determined. Unfortunately, this can be quite a difficult task. The

complexities of brittle failure in composite materials have forced many researchers

to rely on empirical data which has thereby reduced the utility of the analytical

models. In addition, many existing analytical solutions employ failure criteria which

significantly over-predict the rate of matrix cracking. The most obvious case is the

original ACK model in which all of the matrix cracks were assumed to form at a
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single applied stress [8]. This resulted in a "stepped" or "plateau-ed" stress-strain

response where the material response curve is initially linear followed by a single

large jump in strain during matrix failure then the response becomes linear again

albeit with a smaller slope. Hence, even though the micromechanics approach is ap-

pealing because of its simplicity, solutions from many of the existing models do not

mirror experimental data [8,113] and, therefore, alternate approaches are sought.

Within the literature, there are a number of more detailed analyses which

avoid some of the simplifying assumptions employed under the micromechanics ap-

proach [53,137]. For example, a number of solutions employ traditional fracture me-

chanics techniques to investigate the conditions for crack growth near a bi-material

(fiber/matrix) interface [109]. These models are useful since the development of

valid design and failure criteria are contingent upon a full understanding of the

microstructural behavior of the laminate during loading. Unfortunately, modeling

the behavior of an individual crack in this manner may require integration of many

complex theories, e.g. linear elastic fracture mechanics, statistical analysis and vari-

ational mechanics; therefore, when considering the large number of cracks which are

continually developing and growing in a CMC, the analysis can be quite complex.

To further compound the problem, the crack formation within the composite is de-

pendent not only on the lamina properties, but also on laminate and component

geometries. In addition, matrix cracking is not the only damage mode observed in

CMCs. Cracks can also develop within the fibers or along the fiber/matrix interface.

Since the evolution of all these damages is dependent on the magnitude and type of

loading, the operating environment must also be accounted for in the analysis. When

considering all these effects, the problem quickly becomes overwhelming. Perhaps

this explains why a large number of first-order models have been reported in the

literature [67,152,179].

The present research addresses many of the above considerations by presenting

a systematic and comprehensive model capable of analyzing the fatigue response of
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unidirectional and cross-ply ceramic matrix composites. Moreover, the analysis is

developed under a unified and consistent methodology. The literature is inundated

with studies investigating portions of the analysis; however, none of these provide

comprehensive solutions (model and failure criteria) as introduced in the present

research. The foundation of the current approach is rooted in simple analytic formu-

lations which allow the analysis to be extended to consider many complex loading

environments and laminate geometries. Further, the present analysis eliminates the

requirement for gathering empirical crack density data; a tedious and costly en-

deavor.

1.3 Approach

The objective of the current research is to develop and formulate a method-

ology (model and failure criteria) for predicting the stress-strain response of uni-

directional and cross-ply fiber-reinforced ceramic matrix composite when subjected

to quasi-static, repeated, and fatigue loading conditions. The model formulation is

an extension of traditional shear-lag theory, and considers a general damage state

consisting of matrix cracking, interface debonding, as well as fiber failure. These

damage modes are modeled by a set of failure criteria with the minimum reliance on

empirical data which can be easily employed in a variety of numerical or analytical

methods. The criteria used to estimate the extent of matrix cracking and interface

debonding are closed-form and require the basic material properties. The failure

criterion for fiber failure requires a priori knowledge of a single empirical constant.

This parameter, however, may be determined without microscopic investigation of

the laminate microstructure.

For the present analysis, the modified shear-lag approach to model the behav-

ior of unidirectional CMCs is based upon work presented by Kuo and Chou [106].

However, the present theory is not restricted to their particular formulation. For

cross-ply laminates, a new model is formulated which considers a general damage
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state consisting of matrix cracking in both the transverse and longitudinal plies,

interface debonding, fiber fracture, slip and pull-out. The cross-ply formulation as-

sumes that the matrix crack spacing within any ply is uniform, but generalizes the

solution for any relative crack configuration between plies. In addition, unlike the

previous study [106], the present analysis does not require empirical crack density

data. Instead, a specific failure criterion for each damage mode is formulated.

As mentioned, the failure criteria used in estimating the extent of composite

damage are formulated to minimize the reliance on empirical data. Closed-form

solutions are provided for estimating the instantaneous matrix crack density and

interface debond length. The latter is determined through incorporation of a max-

imum stress criterion along the interface. The matrix crack density is determined

at each stress level by a unique failure criterion which requires the strain energy in

the matrix to remain constant at a critical value. This approach is analogous to

a total energy failure criterion for an isotropic material, and has been entitled the

critical matrix strain energy approach by the author. The extent of fiber damage

is determined using an energy-based Weibull failure distribution. This distribution

requires a priori knowledge of a single material constant, namely the percentage of

fractured fibers at laminate failure. The latter may be determined if the ultimate

stress and corresponding failure strain of the unidirectional laminate are known.

The remainder of this document is divided into six chapters and several appen-

dices. Chapter two presents an overview of ceramic matrix composites. It examines

what they are; why they are of interest, and how they can be modeled. For the latter,

chapter two also includes an introduction to the theory of micromechanics, details

of several classical failure criteria, and a summary of previous studies involving the

modeling of ceramic matrix composites.

The theory used in the present study for the analysis of both unidirectional

and cross-ply laminates is presented in chapter three. In addition, failure criteria
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for various damage modes are provided. This chapter concludes with a discussion of

specific considerations required for different loading environments.

In chapter four, modeling of unidirectional ceramic matrix composites under

quasi-static, repeated and cyclic loading is presented. A summary of the model

development is provided along with a comparison of the predicted results and the

corresponding empirical data.

Chapter five is similar in outline to chapter four; but investigates the behavior

of cross-ply laminates. The final chapters, chapters six and seven, provide closing

remarks on the present work and also several recommendations for future research.

In supplement of the seven main chapters, several appendices appear in the final

pages.

1-8



II. Perspective

The intent of this chapter is to provide the reader with background on the

science and engineering of ceramic matrix composites (CMCs), including the various

damage modes of CMCs and how these damages may be modeled. The first section

(section 2.1) serves to motivate the research while section 2.2 begins the general

overview of CMCs. The latter includes a discussion of what CMCs are; why they

are of interest, and how damages induced during loading can impact the mechanical

properties of the laminate. The dependence of the macromechanical response on the

"strength" of fiber/matrix interface is also emphasized. Greater detail on these is

provided in supplemental appendices.

In section 2.3, the impact of the microstructural damages on the macrome-

chanical response of the laminate is examined. This is accomplished by reviewing

the salient features of the stress-strain response for several brittle composite lami-

nates, and serves as a transition between the details of microstructural failure modes

presented in section 2.2 and the goals of the micromechanics theory which are pre-

sented in section 2.4. Next, section 2.5 provides a partial listing of existing theories

(models and failure criteria) which have been employed over the past few decades.

It serves only as a general overview, and groups the theories into broad categories

characterized by the predominant features of the models and failure criteria. The

purpose is to provide a general introduction to some of the more traditional failure

criteria, as well as to make apparent some of the advantages and disadvantages of

these classical solutions. The final section of this chapter, section 2.6, summarizes

the existing work and re-motivates the present analysis. Chapter three provides

more detail on the specific theory (model and failure criteria) used in the present

investigation.
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2.1 Motivation

Ceramic matrix composites have emerged as viable material candidates for

many structural components. In particular, CMCs are under increasing consid-

eration for many high temperature applications in the aerospace industry where

large thermal and mechanical loadings can be expected. Unfortunately, within these

harsh operating environments, extensive damage can develop within the composite

microstructure due to the limited ductility of the constituents in CMCs [85]. Such

damages fundamentally alter the characteristics of the material behavior and, there-

fore, the key to modeling the behavior of a ceramic matrix composite resides in the

ability to accurately estimate the extent and influence of these damages within each

ply during each load cycle. Unfortunately, for fatigue analyses which can involve

many loading conditions over millions of cycles, modeling microstructural damage

is quite a challenging task. In addition, the inherent complexities and stochastic

nature of failure in brittle non-homogeneous materials further complicates the mod-

eling process. This has forced many researchers to rely on empirical data in order

to estimate the residual laminate property, and has resulted in the proliferation of

costly and time-consuming non-destructive evaluation techniques.

An attempt is made within the present study to formulate a set of failure

criteria which can be easily employed and which accurately estimate the damage

state of the laminate. The focus is to reduce the current reliance on empirical

data because even in the most benign case, e.g. laboratory experiments of material

coupons, empirical damage estimates are typically quite tedious to obtain. A prime

example is the rigorous microstructural investigation, with acetate replicas, often

performed for estimating the extent of matrix cracking within a CMC. Researchers

must examine each replica under a microscope and physically count the number of

matrix cracks at each load step. Inherent in this process is a subjective interpretation

of what constitutes a full matrix crack and what does not. Failure criteria which

reduce the need for such undertakings are, therefore, of great utility.
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The failure criteria employed in the present analysis are purposely kept as sim-

ple as possible so that not only can the analysis be easily adapted to consider more

complex loading conditions and component geometries but also so that it can be

employed in a variety of numerical or analytical solutions. For completeness, how-

ever, all predominant damage modes are considered. These include matrix cracking,

interface debonding, fiber fracture and fiber pull-out. The criteria used to estimate

the extent of matrix cracking and interface debonding are closed-form and require

the basic material properties. The failure criterion for fiber failure requires a priori

knowledge of a single empirical constant. This parameter, however, may be deter-

mined without microscopic investigation of the laminate microstructure.

2.2 Ceramic Matrix Composites

A composite is a material which embeds a distinct reinforcement phase (fiber)

within a continuous medium (matrix). This study is concerned exclusively with

ceramic matrix composites (CMCs) in which continuous cylindrical fibers are em-

bedded in a high performance ceramic matrix which is typically some derivative

(oxide, nitride, or carbide) of silicon, aluminum, titanium or zirconium. An exam-

ple is a SiC/CAS CMC which embeds small diameter (15 tim) silicon carbide (SiC)

fibers into a calcium aluminosilicate (CAS) matrix.

Ceramic materials are of interest because they are ideal for many high tem-

perature applications such as those found in jet engines or as external structure on

supersonic or hypersonic vehicles. What makes ceramic materials so appealing is

that they are excellent thermal and electrical insulators which are able to withstand

most environmental and chemical attacks. More importantly, they retain significant

structural integrity (strength and modulus) even at elevated temperatures. The ma-

jor drawback of ceramic materials, however, is their inability to resist fracture. They

are brittle. Theoretically, due to the unique ionic-covalent bonding at the molecular

level, ceramics have the potential of being stronger than many metals, including the
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latest super-alloys. However, this strength is never realized due to the ceramics' low

toughness [18].

Ironically, the complex bonding responsible for exceptional strength, stiffness

and environmental resistance in ceramic materials also prevents localized plastic

deformation. As a result, the voids and inclusions inherent to a ceramics atomic

structure act as nucleation sites where crack growth initiates. Once the cracks form,

the large crack-tip stresses allow the fracture to propagate quickly through the ma-

terial. Growth of the fracture is typically unstable since the brittle material has no

inherent means of arresting the growth. Anyone who has ever dropped a china plate

knows first hand the consequences of fracture in a brittle material. When they fail,

they fail catastrophically, and when discussing jet engines, the phrase "catastrophic

failure" is not something people like to hear.

Fiber-reinforced ceramic composites, however, exhibit a remarkable increase in

toughness when compared to their monolithic counterparts. More specifically CMCs

are characterized by a large strain-to-failure, pseudo-ductility, and most importantly,

a gradual non-catastrophic failure mode. The demand for these advanced materi-

als in aerospace and other high-temperature applications has prompted numerous

studies of ceramic matrix composites over the past few decades. These include both

analytical and experimental investigations. However, before investigating some of

these models, a brief discussion of failure in CMCs is appropriate. The purpose is

to familiarize the reader with the reasons why cracks propagate so readily though

ceramic materials and what can be done to prevent it.

A monolithic brittle ceramic is unable to resist fracture due to its low fracture

toughness, K4 (reference appendix A). One method of increasing Iff in a brittle

material is to reduce the number and size of pre-existing microstructural imperfec-

tions. This is accomplished primarily through modifications in the manufacturing

processes. Unfortunately, improvements in the flaw control processes have been slow

and expensive to implement. As a consequence, the primary means of improving the

2-4



fracture behavior of ceramics has been accomplished through fiber reinforcement.

This approach is not new; in fact, the addition of straw to clay roofs, and animal

hair to pottery are examples of early composites where brittle materials are made

stronger through reinforcement. In addition, careful study of beetle shells and human

teeth illustrates that nature has also used this practice. However, recent advance-

ments in the science and engineering of reinforcement has permitted the concept to

be successfully adapted to advanced materials. Ceramic matrix composites represent

a prime example of how reinforcement can be used to improve the toughness of a

material. The reinforcement phase can be in the form of particles, whisker or short

fibers, continuous fibers or sheets. For this particular study, ceramics reinforced by

continuous fibers are investigated. The toughening effect resulting from the addition

of continuous fibers in a ceramic matrix is discussed next.

Since the ceramic matrix which binds the fibers together in CMCs is typically

of adequate strength for most applications, the fibers do not need to act as the main

load carrying members as is the case in polymer or metal matrix composites; rather

the fibers in CMCs serve to transfer stress across broken matrix blocks. In addition,

fibers which continue to bridge the crack plane provide closing tractions which tend

to reduce the crack-tip stress intensity factor. Hence, the survivability of the fiber is

a major concern.

Ideally, material engineers would like to add ductile fibers with high fracture

toughness; however, the design (temperature) considerations which dictate the use

of ceramics also preclude the use of such fibers. Ceramic composites are therefore

composed of brittle fibers in a brittle matrix. Realizing that brittle fibers have low

fracture toughness and are likely to fail in the presence of high crack-tip stresses, the

original problem: an inherent inability to resist fracture, still appears to exist. How-

ever, as will be discussed, this is not the case. As matrix cracks propagate around the

fibers, energy is dissipated due to the mechanical interactions which develop between
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the constituents.t Hence, the fibers induce toughening (energy dissipating) mecha-

nisms simply due to the presence of the bi-material interface. Energy dissipation is

discussed in greater detail in the following sections.

In summary, the fibers perform three roles: (1) the fibers aid in load transfer;

(2) they produce closing tractions which reduce the crack-tip stress intensity, and

(3) they induce energy dissipating mechanisms which reduce the propensity for the

creation of additional damages. These effects are what provide CMCs with their

exceptional toughness, and gradual non-catastrophic failure mode. As discussed in

the following sections, the "strength" of the interface governs these three phenomena.

2.2.1 Toughening Mechanisms and Interface Design. The shape of a stress-

strain response tells a lot about a material and may even be used to categorize ma-

terials. For example, materials can be classified as brittle or ductile based upon the

appearance of the stress-strain curve. This is illustrated in Fig. 2.1. In addition, the

material's strength, modulus, strain-to-failure and toughness are all characterized by

the stress-strain response. In this manner, given a material, one might conjecture

the shape of the stress-strain curve. However, the latter is more difficult especially

when considering non-homogeneous materials. For example, the shape of the stress-

strain curve for a CMC is similar in appearance to one produced by a ductile metal.

Initially, the response is linear, however, at some stress level, the response becomes

distinctly non-linear. The point of onset of non-linearity is defined as the material's

proportional limit (Fig. 2.1). For ductile metals, the non-linear behavior is associ-

ated with the movement and coalescence of dislocations within the microstructure

(i.e. plasticity). For CMCs, on the other hand, the increasing material compliance

associated with the non-linear region is a direct result of the break-up of the matrix.

Since the constituents in the ceramic composite are brittle (linear-elastic) materials,

tThe term energy dissipation is perhaps a misnomer since the energy is, of course, not eliminated,

but rather simply transferred to some other form. For example, the energy available to split
molecules along a crack front may be "dissipated" in the form of heat if frictional sliding occurs
along the fiber/matrix interface as the crack opens.
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Figure 2.1 Stress-strain response illustrating brittle and ductile failure modes.

and yet the material response resembles that of a non-brittle material, CMCs are

occasionally referred to as possessing pseudo-ductility or pseudo-toughness.

The degree of toughening exhibited by CMCs is, in large part, a function

of the strength of the interface, in particular, the constituent bonding stress and

the frictional shear resistance within debonded regions. Weaker interfaces reduce

the functionality of the fibers whereas strong interfaces increase the probability of

fiber fracture as large crack-tip stresses from matrix fractures are readily transferred

across the interface. In both cases (strong and weak) interfaces, no appreciable

improvement in the mechanical response of the CMC is realized over the monolithic

matrix.

Toughening results from the ability to dissipate energy which is otherwise avail-

able to propagate existing fractures. Therefore, in this case, crack formation, in-

terface debonding and frictional slip all contribute positively towards toughening.

Moreover, if the interface is properly designed, the percentage of fibers which con-

tinue to bridge the crack plane can be enhanced. This promotes toughness through

load transfer and continued frictional energy losses and, therefore, "tuning" the in-
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terface strength though proper design and manufacturing is a very important area

of research in composite engineering. In fact, because of this ability to tune material

properties, such as with CMCs, there has been a fundamental change over the past

thirty years in how material engineering is approached. In the past, materials were

simply applied to structural components. Today, through improved understanding of

material science, advanced materials are designed for specific applications. Ceramic

matrix composites represent an excellent example of this change in philosophy.

For composite materials, this design process not only includes optimizing the

laminate by adjusting the interlaminar properties (e.g. ply orientation, stacking

sequence), but also includes the optimization of lamina properties. This involves im-

proving both the strength and failure characteristics of the individual plies, and can

be accomplished in large part by controlling the properties along the fiber/matrix

interface. A strong interface allows for an efficient transfer of stresses between the

constituents; however, it also increases the probability of fiber failure. Weaker in-

terfaces reduce the chances for fiber failure, but the fiber also carries less load.

For this reason interface design is a major area of research in composite engineer-

ing [16,27,59,78,82,83,88,92,94,99,107,116,121,135,166,208]. It is accomplished

primarily by two techniques: (1) by adjusting the residual stresses across the plane

of the interface and (2) through the application of interface coatings. These are

examined in appendix A.

2.2.2 Damage Modes. Due to the low fracture toughness of the ceramic

matrix, an extensive amount of damage can develop within the CMC's microstruc-

ture prior to composite failure. Matrix cracking, interface slip and debonding, fiber

failure and fiber pull-out are some of the damage mechanisms common to brittle

composites. Unfortunately, the evolution of these damages is difficult to model since

they are dependent upon a number of factors. For example, the composite's geome-

try, interface properties, residual stresses, and loading environment all influence the

damage progression within the laminate. Therefore, even though the microstructure
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of a unidirectional CMC may be relatively simple to model, the myriad of dam-

age mechanisms and their relationships with one another and outside influences are

not. As such, simply identifying and characterizing the relevant factors associated

with the damage progression is far from trivial [12]. Furthermore, "modeling dam-

age in these (ceramic matrix) composites presents unique challenges ... owing to

uncertainties about various damage mechanisms that occur in the composite mi-

crostructure" [196].

When loading CMCs, cracks typically initiate within the composite matrix

since the strain-to-failure of the matrix is usually less than that of the fiber. The

evolution of matrix cracking within a ceramic matrix composite is shown schemat-

ically in Fig. 2.2. The three stresses shown in the figure are the stress at which

Crack
Density

(Imc qr qat Stress

Figure 2.2 Crack density evolution in a brittle composite.

matrix cracking initiates, omc; the critical composite stress, o,,, for which a sufficient

accumulation of cracking has taken place to produce a noticeable decline in the lam-

inate modulus, and the maximum stress beyond which the crack density no longer

changes, out. The latter is referred to as the saturation stress.

For a < acr, the influence of matrix cracking on the material response is

limited and, therefore, need not be considered. Hence for the present analysis, matrix
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cracking is only considered for a,, < ar o at. The average crack spacing at U = a,,

is defined as the initial crack spacing Linit, and the final crack spacing at U =

7osat is denoted Lst for the saturation spacing. Matrix cracking saturates since the

average matrix stress decreases with its failure; thus reducing the impetus for further

failure. In addition, as the debonding and fiber fracture modes become increasingly

prevalent, the energy available for matrix cracking is reduced. For conditions where

the composite is repeatedly loaded and unloaded, matrix cracking can evolve beyond

the static saturation limit; however, the effect is limited. The influence of loading

on the damage progression and material response is discussed in more detail in the

next two sections.

The large extent of matrix cracking which can develop within CMCs is illus-

trated in Fig. 2.3. This figure shows a large number of matrix cracks which have

formed in a [0/9012,, SiC/CAS laminate. The large cracks in the center of the figure

are transverse cracks which have formed in the 90' plies. In addition to these cracks,

a number of matrix cracks are apparent in the outer 0' plies. These matrix cracks

run perpendicular to the local fiber axis, as well as the direction of loading.

As matrix cracks form within the composite, they can also induce interface

debonds. These usually result from the large stress fields near the matrix crack-tip;

however, debonds can also originate from matrix cracks which are deflected along

the fiber axis. However, the latter is rare in cases involving uniaxial loads. As the

number of matrix cracks increases, the fibers are forced to carry a larger percentage

of the load. Eventually, the fibers may fail. In addition, once fractured, the fibers

may pull-out from the matrix. After a critical number of fibers fracture, the laminate

fails.
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Figure 2.3 Matrix cracking within a cross-ply ceramic matrix composite.
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2.2.3 Loading Considerations. In order to successfully model the stress-

strain response of a ceramic composite, a representative state of damage must be

determined. Under conditions of quasi-static loading in which a continuous mono-

tonically increasing tensile load is slowly applied to the composite, the evolution

of damages is fairly well understood although difficult to predict analytically.t For

other loading conditions such as cyclic fatigue, not only is it more difficult to predict

(analytically) the extent of damage, but also the evolution of the damages is not

well understood. In this study, three loading conditions are considered: quasi-static,

repeated and cyclic loading.

Under repeated loading, the laminate is assumed to be subjected to only a

few (< 10) loading and unloading cycles such that under the conditions of repeated

loading, the interface properties (e.g. Ti) are not assumed to change. Therefore, the

stress-strain hysteresis loops produced from repeated loading are equivalent to loops

produced from virgin specimens. Also, repeated loadings to the same maximum

stress will produce stress-strain curves which are identical. For this reason, a typical

repeated loading scenario includes three or four cycles in which a laminate is loaded to

some maximum stress, 'mar,; unloaded to some lower stress, Umin, and subsequently

reloaded to a higher stress, 0rmar 2, i.e. Omax 2 > maxl.

Under such loading conditions, stress-strain hysteresis develops due to frictional

sliding along the interface. For example, a predicted stress-strain response for a cross-

ply laminate during loading and unloading is illustrated in Fig. 2.4. The response

shown represents the hysteresis behavior of a cross-ply, [03/90/03], SiC/CAS laminate

under two loading cycles. In particular, the laminate is initially loaded to 175 MPa

after which the applied load is removed. The laminate is then reloaded to 250 MPa;

unloaded to zero load, and subsequently reloaded to 250 MPa. The shape of the

hysteresis loop is dependent on the extent of composite damage and the interface

tThe term slowly applied implies that inertial and dynamic effects can be neglected. Further-
more, it implies that the loading processes are isothermal such that the theory of elasticity and the
first two laws of thermodynamics are applicable.

2-12



shear, Ti. The expected increase in the size of the hysteresis loop for the second cycle

corresponds to an increase in the laminate's microstructural damage.
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Figure 2.4 Stress-strain hysteresis of a ceramic matrix composite as predicted under
the current analysis.

For fatigue analyses, the composite laminate is assumed to undergo a large

number of loading and unloading cycles under which the interface is assumed to

wear due to the friction. As the interface wears the frictional interface shear stress

Tr degrades and the strength of the interface changes, i.e. 'r = T(N) where N is the

number of cycles. Since the properties of the interface are changing during the load

cycling, the behavior of the laminate (e.g. strength and failure characteristics) will

also vary.

In particular, as the interface wears, the ability of the fiber to transfer load,

dissipate energy and produce closing tractions which reduce the crack-tip stress

intensities all decrease. This permits additional damages (i.e. matrix cracking and

debonding) to occur specifically due to the loading environment. In general, because
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of the nature of fracture in brittle materials, the extent of damage typically remains

constant if the maximum stress is not exceeded. However, under fatigue type loading

environments, the damage within CMCs can increase since the properties of the

material itself are changing [155, 156, 203]. These damages will be referred to as

fatigue specific damages.

The stress-strain response of a brittle composite under cyclic fatigue may be

characterized by a number of salient features: elastic modulus, stress-strain hystere-

sis, strain ratchettingt and S-N behavior (Fig. 2.5). A sketch of several hysteresis

loops is illustrated in Fig. 2.5 (a). In general, the hysteresis and ratchetting behavior

depend upon the composite system and loading environment [100]. As with repeated

loading, the shape of the hysteresis loops under fatigue loading is dependent on the

composite damage, as well as the interface shear. Strain ratchetting, on the other

hand, is more a function of fiber pull-out [153]. The maximum and minimum applied

stresses are assumed to remain constant for all loading and unloading cycles of the

fatigue test. The ratio of the minimum stress during unloading to the maximum

stress during reloading is denoted with the parameter 7, i.e.

R_ -min (2.1)
O'max

where R remains constant. In addition, only tension-tension fatigue tests are con-

sidered in this study. Hence, 1R > 0.

In addition to the hysteresis behavior CMCs also form definitive S-N curves

characterized by a distinct threshold stress, Oth. For applied stresses less than Oth,

the laminate will not fail over a standard fatigue life; typically defined as 106 cycles.

For O > ath, the composite fails before 106 cycles. A typical S-N curve is illustrated

in Fig. 2.5 (b). The arrows indicate that the composite did not fail within 106 cycles.

Note that long term environmental effects such as oxidation embrittlement have not

tThe increase in permanent strain with load cycling is defined as strain raichefing.
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been considered. In general, fatigue tests can last for an extended period of time;

increasing the opportunity for the interface to oxidize.

(a) Hysteresis Loops (b) S-N Diagram
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Figure 2.5 Fatigue life of a ceramic matrix composite. (a) Stress-strain hystere-
sis accompanied by a continuous progression in residual strain (strain
ratchetting). (b) Peak stress versus cycles to failure (S-N) diagram.

2.3 Salient Features of the Loading Response.

A common characteristic of the stress-strain response for a unidirectional lam-

inate under uniaxial tensile loading is that two distinct regions, one linear and the

other non-linear, are observed. Initially the composite's response is linear, however,

once damage begins to accumulate within the composite's microstructure, the re-

sponse begins to deviate from linearity. The point at which the stress-strain curve

becomes non-linear is referred to as the composite's proportional limit. In the present

study, the stress level which corresponds to the composite's proportional limit is re-
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ferred to as the critical composite stresst and is denoted a, or simply a,, for a

unidirectional laminate (Fig. 2.6).

[0]

90

%r 90 ......... [90]

Figure 2.6 Stress-strain responses illustrating the proportional limits for 00, 900,
and cross-ply laminates.

The stress-strain response of a 90' laminate (i.e. 0' ply loaded transversely) is

noticeably different than the unidirectional response since the stress-strain response

of a 90' laminate is linear up to its failure under quasi-static loading. Hence, the

critical composite stress for this laminate, 4Cr 9 o , corresponds to the composites ulti-

mate strength [125]. For a cross-ply laminate, two proportional limits are typically

observed [209]. The first occurs after damage accumulates in the 90' ply and the

tThe definition for the critical composite stress is sometimes ambiguous. One possible definition

for the critical stress is the stress required to cause a single crack to form within the matrix from
a dominant flaw. For the present document, this stress is referred to as the crack initiation stress,
or the stress at which matrix cracking initiates, and is denoted by omc. The second definition for
the critical composite stress is the stress level at which the laminate stress-strain response becomes
non-linear. This first point of non-linearity corresponds to the accumulation of matrix cracks since
the composite stiffness is virtually unaffected by the presence of a single crack provided a sufficient
number of fibers continue to bridge the crack plane. This latter definition will be used in defining
the critical composite stress, and will be denoted by o-r. For most ceramic composites, Ucr > mc.
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second deviation results from damage accumulation in the 00 ply. The two critical

stresses for the cross-ply laminate are denoted in this paper as r0 and c respec

tively, where a superscript as opposed to a subscript is used (Fig. 2.6).

For cross-ply laminates, matrix cracks may develop within both the 900 ply and

the 00 ply. In order to differentiate between matrix cracks in the transverse (900)

and longitudinal (00) plies of the cross-ply laminate, matrix cracks in the 90' plies

are referred to as transverse cracks and the term matrix cracks is reserved for cracks

in the 0' plies of the cross-ply laminate. Both transverse and matrix cracks are

assumed to propagate orthogonal to the loading directions. Thus, cracks propagate

perpendicular to the fibers in the 0' plies and parallel to the fibers of the 90' plies. A

detailed description on the evolution of damage within unidirectional and cross-ply

composites may be found in references 193 and 205.

It has become customary to divide the stress-strain curve of a CMC into dis-

crete regions which characterize the dominant damage modes [193]. Figures 2.7 and 2.8

are examples of this process for a unidirectional and cross-ply CMC, respectively.

Dividing the macromechanical stress-strain response into regions associated with cer-

tain damage mechanisms is not only convenient for describing the material behavior,

but it also aids in the modeling process. In the present study, the stress-strain rela-

tionships for quasi-static, repeated and fatigue loading are predicted. In addition, the

present analysis has been formulated to consider both unidirectional and cross-ply

laminates. In all cases, the theory of micromechanics, as presented next, is used.

2.4 Micromechanics

This section presents the modeling assumptions for the composite's geometry,

damage progression, and load transfer in the case of a damage free composite, as

well as when microstructural damages are present. The model formulations are

presented in chapter three, and a review of rule-of-mixtures constitutive relations
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Figure 2.7 Stress-strain response of a unidirectional CMC. The stress-strain re-
sponse is divided into regions characterized by the composite's damage
modes.

for an undamaged laminate, and an introduction to shear-lag theory for a damaged

laminate are presented in appendix B.

2.4 .1 Modeling Assumptions. For purposes of analysis, a number of sim-

plifying assumptions are made. Further, for convenience, these assumptions are

presented in two sections. First, the assumptions concerning the geometric arrange-

ment of the laminate are discussed. These assumptions permit the laminate to be

modeled using a simplified representative volume element (RVE) consisting only of a

single fiber and surrounding matrix. The second set of assumptions centers around

the assumed symmetry in the composite's damage state which allows use of the RVE

with damage.

Laminate Geometry. It has been well established that the stress-

strain response for an undamaged composite [polymer matrix composite (PMC),

metal matrix composite (MMC) and ceramic matrix composite (CMC)] can be accu-

rately predicted using a simplified unit-cell (RVE) in which only the basic constituent

properties are considered. Such solutions are typically referred to as rule-of-mixtures
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Figure 2.8 Stress-strain response of a cross-ply CMC. The stress-strain response is
divided into regions characterized by the composite's damage modes.

approximations [3]. Implicit to the theory, however, are a number of assumptions.

For example, the arrangement of the fibers in the composite's matrix is assumed to

be uniform and symmetric. In particular, the fibers are assumed to be prismatic,

continuous and embedded as a regular rectangular array within the matrix (Fig. 2.9).

As illustrated in Fig. 2.10, this is most certainly an approximation; however, experi-

Actual Model

© @ 00 00 0 0 0 0 0 0 0 0 0 0
00 @ 0 0 o 0 0 0 0 0 0 0 0 0 0

OQ0 00000 00 00 00 00 0
00 00 0 -0 00 0 0 0 0 0 0 0

@0 0 0 00 0 0 0 0 0 0 0 0 

Figure 2.9 Assumed geometric arrangement of fibers.

mental data depicting the macro-mechanical behavior of the composite indicate that

the assumption is reasonable. In addition to the assumed symmetry in the fiber

arrangement, the fiber/matrix constituents are also assumed to be void of any im-

perfections, and therefore they respond in a perfectly linear-elastic fashion. Finally,

the constituent interface is assumed to be smooth and perfectly bonded.
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Figure 2.10 Actual geometric arrangement of fibers
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The geometric symmetry which results from the aforementioned assumptions

creates three mutually perpendicular planes of symmetry. Such a composite material

is orthotropic in nature, and can be described by nine independent constants [164].

These reduce to fivet if the material properties are assumed to be the same in the 2-3

direction (Fig. 2.11). The latter is referred to as a transversely isotropic material. In

addition, because of the assumed symmetry in the laminate's geometry, the compos-

ite response can be modeled using a representative volume element (RVE) consisting

only of a single fiber and its surrounding matrix. This simplification is at the core

of micromechanics theory in which the laminate behavior can be modeled using a

simple unit-cell as illustrated in Fig. 2.11. For convenience, the unit-cell is typically

2

Fiber 3

r f Fiber
R Matrix

Figure 2.11 Simplification of the assumed idealized laminate geometry to a one-
dimensional unit-cell.

assumed to be comprised of a pair of concentric cylinders each representing a given

constituent. For the cell shown in Fig. 2.11, rf is the fiber radius and R is the outer

radius of the matrix. The latter is dependent on the relative fiber spacing. If A1 , A..

tThe composite's elastic moduli, El and E 2; the composite's shear modulus, G12; and the

Poisson's ratios, Vl and v23 .
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and A, represent the cross-sectional areas of the fiber, matrix and composite such

that Af frr}, Am = R2 ij) and A, = 7rR 2 then the parameters vf = Af/A,

and vm = Am/Ac define the fiber and matrix volume fractions, respectively. It fol-

lows that R = rf 1 ± v/vf. The geometry of the undamaged unit-cell is now

completely defined. The constitutive equations for the unit-cell are provided in ap-

pendix B. Next, the geometric assumptions regarding the incorporation of damage

in the unit-cell are discussed.

Damage State. In order to model a damaged laminate with

the unit-cell described above, symmetry with respect to the damage configuration

must be assumed. Toward this end, the matrix cracks within any given ply are

assumed to extend throughout the entire lamina cross-section. In particular, each

crack describes an infinitely thin plane orthogonal to the loading axis. If multiple

matrix cracks exist, the fractures are assumed to be uniformly spaced over the length

of the composite. Experimental data indicate that such a periodic distribution of

cracks is reasonable [44,138]. In addition to the matrix cracks, interface debonds

may also form during loading. For simplicity, these debonds are assumed only to

originate from the crack planes; extend uniformly around the fibers, and to be of

constant length for all fiber/crack pairs. Finally, as will be discussed later, the

distribution of fiber fractures is assumed to be uniform. The above assumptions

allow the composite to again be modeled with a simple RVE consisting of a single

fiber and surrounding matrix. In addition, when matrix cracks are considered, the

unit-cell is assumed to span a pair of matrix cracks as illustrated in Fig. 2.12. The

length of the cell is, therefore, equal to the average crack spacing which is denoted

by L.

Numerous models have been proposed for investigating the initiation and evo-

lution of matrix cracking during tensile loading of brittle unidirectional laminates.

Despite this, few theories have been proposed which are both representative of the

empirical data and amenable to various numerical and analytical methods. Two
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Figure 2.12 Assumed geometric symmetry and corresponding representative vol-
ume element.

dominant failure criteria have been presented in the literature: maximum stress

(strain) theories and the more traditional fracture mechanics approaches. The latter

category includes both the energy balance techniques (discrete solutions) of Aveston,

Cooper and Kelly [8], as well as the stress intensity solutions (continuum solutions)

similar to those proposed by Marshal, Cox and Evans [127]. The solutions from

Aveston, Cooper & Kelly, and Marshal, Cox & Evans are typically referred to as the

ACK and MCE theories, respectively.

Previous models yield information on the stress level at which matrix cracking

initiates, as well as providing bounding limits for the expected crack densities [8,

179]. Other models investigate the influence of various parameters (fiber volume

fraction, fiber radius, thermal stresses, etc) on the expected cracking behavior [113].

Others consider the effects of flaw size and location, and possible variations in the
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strain energy release rate [77,102,107,180,196]. Unfortunately, none of the existing

analytical solutions provide an accurate representation of the evolution of matrix

cracks during loading. The limited success of these models has led researchers to

rely on empirical crack density data obtained through tedious and time consuming

microscopic investigation of the composite microstructure [41,193]. Several of the

classical solutions are presented in the next section and in appendix A.

2.5 Existing Models

A tremendous amount of research dealing with ceramic matrix composites has

appeared in the literature over the past few decades. Because of this, a number

of journals have been established in support of the research. The purpose of this

section is to introduce and categorize a portion of the published work which is directly

relevant to the present study. The literature review is presented in two subsections

which consider unidirectional and cross-ply lay-ups separately. In addition, both

experimental and numerical studies are presented.

As mentioned earlier, in order to model a material such as a ceramic ma-

trix composite which has several prominent damage modes, two items are required.

In addition to a representative volume element (RVE) which defines the geometry

and constitutive relations, a set of failure criteria for each damage mode must also

be selected in order to determine the extent of damage within the composite mi-

crostructure. Since the formulations of the RVE and the failure criteria are typically

independent, researchers can mix and match as necessary. As such, within each

subsection an attempt is made to list the referenced publications by these two cat-

egories. Hopefully, in doing so, this section serves as a convenient reference list for

many of the ideas used in the present research.

2.5.1 Unidirectional Laminates. References 5-8,11,12,16,17,20-22,26,28,

33-35,37,38,40,41,44,46,54,64,68,70,76,79,89-91,93,96,97,100,103,110,113,117,127,
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129,133, 134, 137-139, 145, 146, 150-153, 163,178, 181, 182, 184-186, 193,196,200-202,

207,210, 212,213 represent most of the studies conducted on brittle unidirectional

composites. A few experimental studies have been included in the review [5, 6,12,

21, 41, 68, 76, 151,193, 210]; however, the majority are theoretical analyses which

investigate the fracture behavior of brittle composite systems [7, 8, 16, 17, 20, 22, 26,

28,35,37,38,40,44,46,54,64,70,79,90,93,100,103,110,113,117,127,129,133,134,137-

139,146,152,153,163,178,181,182,184-186,196,200,201,207,212,213]. Furthermore,

in their analysis, many of these latter studies incorporate shear-lag models [7, 20,26,

40,46,103, 113,117,133, 138, 152, 182] or similar techniques involving a single unit-

cell [54, 79, 139, 153, 186, 200, 201, 212]. Some of the studies utilize finite element

techniques [11,16, 44, 97,178].

The failure criteria for estimating the extent of matrix cracking can be loosely

divided into three categories: maximum stress theories [22, 28, 40,113], fracture me-

chanics approaches [8, 26, 70, 90, 110,127, 129,137,196, 201, 213], and statistical es-

timates [37, 117, 181,182, 207]. Of course, this is not an exhaustive list of possible

criteria, and there is some over-lap between these categories. In addition, the studies

employing traditional fracture mechanics techniques can be further sub-divided into

energy balance solutions and stress intensity approaches. References 8,46,201,213

and 127,129,196 provide examples of models which fall in these two categories, re-

spectively. It is also convenient to highlight studies which consider different damage

modes, as well as loading conditions. References 22, 35, 38, 64, 212 investigate in-

terface debonding and references 113,134,146,186 focused on fiber failure, whereas

fiber pull-out is the main focus of references 93,134. Conditions of repeated and

fatigue loading are considered in references 8,100,153,178 and 17, 54,163,181,184

respectively.

2.5.2 Cross-Ply Laminates. A number of experimental and numerical

studies for cross-ply polymeric and ceramic matrix composites have also been re-

ported over the years. References 9, 10, 14, 19,39,40,49, 50, 56-58, 63, 66,67, 69, 72,
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84, 85, 106, 111,112, 115, 118,119,124, 125, 139,142, 143,147,152-154,157,158,183,

194,195,198, 205, 206, 209, 211 represent some of this effort. As reported in refer-

ences 85,124,125,143,152,209, cross-ply ceramic composites also exhibit extensive

microstructural damage prior to failure. Hence, both a representative model, as well

as an appropriate failure criterion for each damage mode are required if the com-

posite's behavior is to be modeled. Studies reported in references 9, 10, 14, 39, 40,

49,50,56-58,63,66,67,69,72,84,106,111,112,115,118,139,142,147,153,154,157,158,

183,194,195,198,205,206,211 represent a variety of modeling techniques which com-

bine a myriad of failure criteria to predict the cross-ply composite's behavior. Many

of the model formulations in the above studies are based upon the classical shear-

lag formulation [9, 10, 39, 40, 56-58, 67, 72, 106,111,112,118,147,153,154,157, 211].

A number of failure criteria have been used in conjunction with the shear-lag ap-

proach to estimate the laminate's damage. Some examples of common failure cri-

teria are the maximum stress criterion in which a single-value of matrix strength

is assumed to control matrix cracking [39,58,112,153]; the traditional fracture me-

chanics approaches which employ a critical energy release rate or stress intensity

factor, [9, 10, 56, 67,111,118, 147,198,211], and statistical failure analyses in which

the inherently stochastic nature of brittle failure is considered [57]. Empirical data

have also been used [106,153,154]. Laws and Dvorak combined a critical energy re-

lease rate approach with a statistical analysis [111], while Zhang et al [211] employed

a critical energy release rate approach with an empirical resistance curve technique.

References 14,40, 84,106, 205, 206 consider matrix cracking in both the 900 ply and

the 00 ply in ceramic composites. The models from Beyerle et al [14] and Xia and

Hutchinson [205] represent more sophisticated analyses whereas models from Kuo

and Chou [106] and Daniel and Anastassopoulos [40] are shear-lag approximations.

The majority of the above mentioned studies analyze matrix cracking in polymer-

based glass/epoxy and graphite/epoxy cross-ply laminates [49,56-58,66,69,111,112,

118,139,183,195]. Recently, several studies have been reported to investigate the
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behavior of ceramic matrix composites [14,40, 84,106,154, 205, 206], including the

initiation and evolution of matrix cracking [14,84,205,206], as well as the general

laminate response (e.g. stress-strain behavior and modulus change) [40,106,154].

2.6 Summary of Existing Work

As illustrated in the previous section, there has been a large amount of re-

search accomplished in the area of ceramic matrix composites. However, prior to

this study, there did not exist a systematic micromechanics approach for modeling

the fatigue response of a ceramic matrix laminate. Several shear-lag models have

been successfully employed in predicting the response of CMCs, but only under lim-

ited loading and damage conditions [7, 20,26,40,46,103,113,117,133, 138,152, 182].

For example, Daniel et al utilize a shear-lag model in order to investigate the mod-

ulus degradation in unidirectional CMCs under conditions of matrix cracking and

interface debonding resulting from quasi-static loading [40]. The analysis is sim-

ilar to the original work by Aveston, Cooper and Kelly (ACK) who first mod-

eled the behavior of CMCs under quasi-static conditions [8]. Karandikar [86] and

Kuo [103] also use a similar approach to investigate the behavior of both unidirec-

tional and cross-ply laminates, however, again their studies are limited in scope.

For the unidirectional laminate, matrix cracking and interface debonding are con-

sidered. For the cross-ply laminate, transverse cracking is also considered; how-

ever, the analysis is constrained to only a few discrete damage configurations [103].

The general solution is not determined. Furthermore, many of the other shear-lag

models investigating cross-ply laminates consider only transverse cracking of the

90' plies [9,10,39,56-58,67,72,111,118,147,157,211]. Hence, there is a need for a

micromechanics model which not only incorporates the additional damages associ-

ated with ceramic matrix composites, e.g. fiber fracture and fiber pull-out, but also

considers a generalized state of damage.
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In addition to the model itself, failure criteria for each of the damage mecha-

nisms are required. As mentioned, simple analytic criteria are desired. For matrix

cracking, the maximum stress criteria employed by ACK [8] and Daniel et al [40]

are appealing due to their simplicity; however, the analytic crack densities predicted

under these approaches do not match well with the empirical data. In theory, the

predicted crack densities evolve rapidly over a narrow stress range whereas exper-

imentally, a gradual evolution of matrix cracking is observed. The energy balance

solution presented by Spearing and Zok suffers similarly [179]. The criterion adopted

by Weitsman and Zhu demonstrates a more realistic stress range for the matrix break-

up; however, the predicted response still only matches the empirical data in piecewise

segments [201]. This results because the predicted crack densities are forced to jump

in a discrete manner. In particular, the crack density is assumed to double each time

the failure criterion is satisfied [201]. The latter is also a limitation of the maximum

stress criterion [8]. Finally, the failure criteria presented by Spearing and Zok [179]

and Weitsman and Zhu [201] are dependent on the critical energy release rate of the

composite which has proven quite difficult to quantify in CMCs [37]. As a result,

researchers have been forced to rely on empirical data for determining the extent of

microstructural damage. Unfortunately, such data are tedious and costly to obtain,

if they can be determined at all. t Hence, there is a need for better and reliable failure

criteria which can be easily employed in a comprehensive micromechanics analysis.

Moreover, these criteria need to be consistent with the experimental data, and finally

the solutions should minimize the current reliance on empirical data.

Despite the large number of models which have been proposed (section 2.5),

there are only a small number of micromechanics studies that compare predicted

stress-strain responses with empirical data for CMCs under quasi-static loading

[8, 40,154]. Results under fatigue loading are even more scarce [54,153]. In par-

tEmpirical data on fiber fractures and interface debonds are virtually impossible to obtain due
to the nature of the fracture modes.
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ticular, the analyses presented by Pryce and Smith [153] and Evans et al [54] are

the only papers found by the author which compared predicted and experimental

results for fatigue type loadings. The analysis by Pryce and Smith uses empirical

crack density data and is limited to small strain values since matrix cracking is the

only damage mode considered [153]. Evans et al provide a more comprehensive anal-

ysis; however, the study is limited to unidirectional composites. Furthermore, the

model and failure criteria are quite complex and rely on empirical data. No analytic

predictions of the composite's fatigue limit and fatigue life are known by the author

to exist. Hence, there is a need for analytical (micromechanics) models which pre-

dict the stress-strain response under different loadings, including the complete fatigue

behavior,t for unidirectional and cross-ply CMC laminates.

The model and failure criteria formulated here provide a systematic method-

ology satisfying the aforementioned requirements. The micromechanics models ac-

count for a general set of damages under the micromechanics assumptions, and

the failure criteria are simple, analytic and provide good agreement with experi-

mental data. Moreover, their reliance on empirical data is minimized. Finally, as

demonstrated in chapters four and five, the results predicted by the present analy-

sis compare well with experimental data for both unidirectional and cross-ply CMC

laminates subjected to quasi-static, repeated and fatigue loadings.

tS-N behavior, hysteresis, modulus degradation and strain ratchetting.
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III. Theory

The goal of the present analysis is to generate stress-strain responses which

are representative of empirical data for unidirectional and cross-ply ceramic matrix

composites. This study focuses on the stress-strain behavior since such responses

yield the residual laminate properties (e.g. strength and stiffness) which are ulti-

mately the desired quantities in the real applications of CMCs. Moreover, if the

predicted stress-strain response matches well with experimental tests then one can

assume that the microstructural damages are being adequately characterized. The

methodology adopted for the current analysis is outlined in Fig. 3.1.

MODEL

Laminate Geometry

Constitutive Law

Stress-Strain
S-N Behavior

Strain Ratchetting

Modulus Degradation

Laminate Failure
FAILURE CRITERIA HysteresiLOADING

~CONSIDERATIONS

Matrix Cracking
Quasi-Static

Interfacial Debonding
Fibe FratureRepeated

~Cyclic

Figure 3.1 Methodology overview.

Three concepts are incorporated in the analysis. These are (1) the representative
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volume element (model) which defines the laminate's geometry and constitutive re-

lations, (2) the failure criteria which yield the state of damage in the laminate, and

(3) some additional microstructural mechanisms which are required when analyzing

the loading and unloading behavior, e.g. frictional slip. The latter are labeled under

the heading of loading considerations in Fig. 3.1.

For modeling purposes, two constitutive laws are used to generate the stress-

strain curves depending on whether or not damage is present within the composite

(appendix E). For an undamaged laminate, a rule-of-mixtures constitutive law is

used (appendix B). This allows for a extremely efficient means for determining the

composite strain, ec. In theory, since the composite's constituents are assumed to

deform linear-elastically, the composite strain is completely defined by the Hookean

relation

= ECe (3.1)

where a is the applied stress and E, is the elastic modulus of the composite. Note

that the latter is only a function of the laminate geometry and the constitutive

properties, i.e.

E, = vfEf + vmEm (3.2)

for a unidirectional laminate and

Eb 1E + d 2  (3.3)
b + d b-+ d

for a cross-ply laminate where

E1  vfEf + vmEm, (3.4)

E f+ V (3.5)
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In Eqs. (3.2) and (3.3), vf and vm are the volume fractions of the fiber and matrix

constituents, respectively. The parameters Ef and Em are the corresponding elastic

moduli, and b and d are the half-thicknesses for the 900 ply and the 0' ply in a

cross-ply laminate.

Once damage forms within the laminate, the composite strain is determined

from Eq. (3.6) which assumes that the composite strain is equivalent to the average

strain in an undamaged fiber.

C = EL IL a(x) dx + (aj - ac)AT (3.6)

Furthermore, the fiber stress, ao(x), is, in general, dependent on the extent of matrix

cracking, interface debonding, and fiber fracture. Moreover, the specific equation

relating oy (x) to the laminate geometry and damages is determined from the shear-

lag formulation as presented in the next section. The extent of damage is determined

from the appropriate failure criteria (section 3.2).

In short, given the proper laminate parameters and loading history, the mate-

rial stress-strain response can be determined from Eqs. (3.1) through (3.6). The re-

mainder of this chapter provides details of the theoretical formulation for the present

study. The theory is presented in three sections: model formulation, failure criteria,

and loading considerations.

3.1 Model Formulation

As mentioned, prior to the formation of any damages, Eqs. (3.1), (3.2) and (3.3)

are used to generate the laminate's stress-strain response. This rule-of-mixtures

theory is well established and is outlined in appendix B. The interesting case is

when damage is present and o1 (x) varies over the length of the unit-cell. This is

now addressed.
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3.1.1 Modeling Damage. When introducing a matrix crack into the analy-

sis, the axial constituent stresses vary in the vicinity of the fracture since the stress

in the matrix vanishes at the free boundary (Fig. 3.2). Furthermore, along the plane

Stress (;

Fibervf

.................. ° .. ................ m

Matrix '.. .°

x

Matrix

Matix Crack

Figure 3.2 Stress redistribution near a matrix crack.

of the crack, the fiber stress reaches a maximum since the bridging fiber is forced to

carry the entire load. The magnitude of the maximum fiber stress is

af W~max --- --. (3.7)
vf

Away from the crack plane, the stresses are redistributed within the constituents

and eventually return to a magnitude equal to their original rule-of-mixtures value.

These stresses are denoted as afo and ao for the fiber and matrix, respectively.

Hence, the effect of the crack is a localized phenomenon which helps explain why

the stress-strain response is not influenced by a single crack (a = am,), but rather
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only deviates from linearity after a significant accumulation of cracks (0, a,,). It

may be shown that at any point equilibrium requires

= v Of(X) + Vmc .(X). (3.8)

If multiple cracks are considered, then the pattern in Fig. 3.2 simply repeats.

That is, along each fracture plane, the matrix stress vanishes and the stress in

the fiber is a maximum (Fig. 3.3). Away from the crack plane, the stresses are

redistributed between the constituents.

Stress

/Matrix

Fiber

• " Matrixtr.x

Figure 3.3 Stress redistribution for multiple cracks.

In examining a simplified free body diagram of a unit-cell spanning a pair

of matrix cracks, it becomes quite apparent that the vehicle that the fiber uses to

transfer load back into the matrix is exactly the shear stress which develops along

the fiber/matrix interface (Fig. 3.4). And indeed when carrying out the mathematics

for the equilibrium of forces on the fiber (Fig. 3.5), the rate of change of the axial
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Matrix

Ti (x) Ti (x)

Fiber
Gi (x) Ti (x)

Figure 3.4 Simplified free body diagram of a unit-cell spanning a pair of matrix
cracks.

fiber stress is found to be directly proportional to the interface shear according to

Tr f- (x) +f(x) + dx dx +21rrf .ri(x) dx,= 0 (3.9)

or equivalently
daf(x) _ -2r(x) (3.10)

dx rf

From Eq. (3.8), the matrix stress, a.(x), is also dependent only on the interface

shear. Hence, if the interface shear stress, Ti(x), can be determined, or somehow

defined, then the constituent stresses and ultimately the composite strain may be

determined from Eqs. (3.6), (3.8) and (3.10). This is the basic premise of shear-lag

___ __ __ __ _ . i(x)

(x) W q(x) + (Yfx(X) dx

2rf dx

Figure 3.5 Equilibrium of forces on the fiber.
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theory in which an approximate expression for ri(x) is assumed. In particular, shear-

lag theory assumes that the interface shear stress is proportional to the difference in

the average displacements of the constituent. That is,

ri(x) = 7-/{f(x) - tir(x)} (3.11)

where 'H is the proportionality constant. The average displacements for the fiber

and matrix, uf(x) and it.(x), are determined by considering the deformation of a

line which is initially orthogonal to the loading axis. These displacements, as shown

in Fig. 3.6, are determined from Eqs. (3.12) and (3.13).

- jrf fo uf(x, r) r dO dr (3.12)
7r fo

Ur - 2  ) JJ u(x,r) r dO dr (3.13)

where ujf(, r) and um(x, r) are the two-dimensional in-plane constituent displace-

ments illustrated by the deformed line in Fig. 3.6. Note that the deformed line,

f (x)

M 
W

R
Matrix r

~~ Fiber -

U (x r)

Figure 3.6 Deformation of a line, initially orthogonal to the fiber axis, during load-
ing of a composite with damage.

u(x, r), illustrated in Fig. 3.6 is only an illustration and may not be representative of

the actual deformation. In theory, the strain, i.e. the derivative of the displacement,
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must be continuous within each of the constituents, but may be discontinuous along

their common interface. Furthermore, the shear stress vanishes along any planes of

symmetry, e.g. at r = 0 and R. The latter boundary condition requires that the

matrix-to-matrix interface of adjacent cells have continuous displacements and be

free of any shear such that the deformation of each cell is equivalent. Given the

average constituent displacements, Eqs. (3.8), (3.10) and (3.11) completely define

the state of stress [of (x), u,(x) and ri(x)] within the unit-cell.

Under the traditional shear-lag formulation, these stresses can represented by

Eqs. (3.14) through (3.16) [25].

Uf W + Vm cosh(#x) (3.14)
vf cosh(1L/2)amo

{ cosh(Ox) (3.15)
om(x) = rmo 1 -cosh(fL/2) (

i 3 - #rf vm sinh(iox) (3.16)
2 vf cosh(/L/2)°"o

Furthermore, if these distributions are known then the laminate's stress-strain re-

sponse may be determined from Eq. (3.6). This procedure is, of course, contingent

upon a priori knowledge of the average crack spacing, i.e. the parameter L in

Eqs. (3.14) through (3.16) must be known. This requires the use of a predetermined

failure criterion. Moreover, if other damage mechanisms, laminate geometries and

loading conditions are considered, Eqs. (3.14) through (3.16) must be appropriately

modified. This is the focus of the current research in which Eqs. (3.14) through (3.16)

are modified to account for other damages such as interface debonding and fiber frac-

ture. In addition, a myriad of other items required to model the mechanical response

of unidirectional and cross-ply laminates when subjected to repeated loading condi-

tions are developed. These are presented in the remainder of this chapter, as well as

appendices B through I. The predicted composite response is presented in chapters

four and five.
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As presented in the previous chapter, several shear-lag models have been pro-

posed for analyzing unidirectional and cross-ply brittle fiber-reinforced composites.

The primary difference between many of the shear-lag models resides not in their

formulations, but rather in the procedure on how the instantaneous damage config-

uration (crack spacing, debond length, etc) is determined. For the current analysis,

the fundamental theory used in the development of the two models for the unidirec-

tional and cross-ply laminates is the same. More specifically, the models differ only

in their representative volume element (RVE) geometries (e.g. cross-sections) and

choice of coordinate system. These formulations of the unidirectional and cross-ply

shear-lag models are now presented.

3.1.2 Unidirectional Model. For the unidirectional laminate, the only

stresses considered are the axial fiber stress, af(x), the axial matrix stress, am(x),

and the interface shear, Ti(x). Moreover, these stresses are related to one another

through the following equilibrium relations [25,1 0 3].t

= Vf f(x) + V om(X) (3.8)

df()- 27x)(3.10)
dx rf

Equations (3.8) and (3.10) represent two equations in three unknowns, of (x), om(x)

and ri(x). Under shear-lag theory, two additional relations are assumed. The first

equation from the shear-lag analysis relates the interface shear to the average con-

stituent displacements according to Eq. (3.11) [25,103].

,•ri(x) = 7-{uf(x) - im(x)} (3.11)

tSee also appendix B.
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In addition, the current shear-lag formulation also assumes the following kinematic

relations:

af (x) + Efaf AT Efscf(x) Ef du7 (x) (3.17)

and

am(x) + EmamAT = Emmc,(x) - E, dii (x) (3.18)

It is these latter relations where the problem is reduced to one dimension. The

problem formulation now consists of four equationst in four unknowns, af(x), 0m(z),

r (x) and X-. The derivations of 7 and af(x) are now presented. Given these

solutions, determination of am(x) and ri(x) is trivial from Eqs. (3.8) and (3.10).

3.1.2.1 Determination of the Shear-Lag Constant, X. Under the cur-

rent formulation, the difference in the average constituent displacements, W(x) -

'iim(x), is dependent only on the interface shear, ri(x), because of the assumed prob-

lem kinematics. This allows the shear-lag parameter, 7H, to be determined easily

from Eq. (3.11); however, the formulation of the right hand side of this equation is

somewhat involved.

To begin the analysis, consider the unit-cell illustrated in Fig. 3.7. As is typical

of micromechanics analyses, the unit-cell is assumed to consist of a single fiber and its

surrounding matrix (appendix B). Furthermore, these entities are modeled as a pair

of concentric cylinders of length L which is the average matrix crack spacing. Also,

note that the fiber/matrix constituents are permitted to debond with the length of

the debond being denoted d. Within the debonded region, the interface shear stress

is assumed constant in order to make the analysis tractable. Hence Eq. (3.11) only

applies over the range -L/2 + d < x < L/2 - d.

Let the geometry of the cylindrical model be defined by the coordinates, r,

0 and x as defined in this figure. Furthermore, let TJ E [0, rf] and -- E [rf, R]

tEquations (3.17) and (3.18) are not independent.
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X Fiber -

Matrix

Stress

Y/v f Fiber
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Matrix

x+L/2

Interfacial
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Figure 3.7 One-dimensional shear-lag model and corresponding constituent and in-
terface stresses.

define the boundaries of the individual constituent cylinders. Now for this system of

coordinates, equilibrium requires

O07rr +  1-r_0 + 1x + 1 ( 0r - 00) = 0, (3.19)
Or rO O0 x r

Or I r  O0 + -r e ,O (3.20)
O9r rO O9 x r

oTrX +  I-aoo +  a + -r . (3.21)
O9r rO +9 O9x r

From all the simplifying micromechanics assumptions outlined in the previous chap-

ter, the constituent stresses are independent of the circumferential angle 0. Hence

Eq. (3.20) is satisfied directly, and Eqs. (3.19) and (3.21) reduce appropriately. Fur-

thermore, the radial normal stress, 0 rr, and the radial displacement, ur, will be
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neglected. As a result, Eq. (3.19) will not be satisfied. Based upon these assump-

tions, the governing equilibrium equation becomes

0-T + -x + -1 Tx 0. (3.22)
ar ax r

When considering the two regions --7 and r-j, as well as Eqs. (3.8) and (3.10),

Eq. (3.22) can be represented by the following relations.

dr(x,r) 2i(X) + 1(x,r) 0 for r C - (3.23)
dr rf r

dr (x,r)+ 2Vf7i(x) + - r(x,r) 0 for r C (3.24)dr vmrf r

where 7(x, r) = Txr. Further, r(x, r) is the two-dimensional constituent shear stress

which results from the two-dimensional deformations of the fiber and matrix (refer-

ence Fig. 3.6 on page 3-7). Solving Eqs. (3.23) and (3.24), the following relations are

found.
r

7(x,r) =--ri(x) for r C T- (3.25)rf

-(x,r) R rf) (R r) ri(x) for r E T; (3.26)

Equation (3.26) is more apparent when considering that

Vf2
- = rf r) (3.27)
Vm

Additionally, the linear-elastic kinematic relation between the constituent stress and

displacements is given by

7(x,r) = G Ou + o (3.28)
31x Or
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when considering small strain theory. Recall, however, that under the current for-

mulation, the radial displacement, ur, is neglected; hence Eq. (3.28) reduces to

an(x, r) 1 rur - 1 - T-ri(x) for r E -- , (3.29)
Or Cf rj

au(xr)_ -1 - rf> ( - r (x) for r e (3.30)
Or Gm ( r( r

where Eqs. (3.25) and (3.26) have also been considered and where ux is now writ-

ten as u(x, r). Integrating Eqs. (3.29) and (3.30), the two-dimensional constituent

displacements are found to be

2rf ( - r2) r-(x) for r C Ty (3.31)

and

U.(X, r) = u,(x) + 2 G v 2R2 1n r + r2 - r2) r,(X) for r E T;. (3.32)

The displacement u(x) is the axial displacement along the interface [i.e. u(x)

uf(x, rf) = um(x, rf) ]. Moreover, since Eq. (3.11) is only valid within bonded inter-

face regions, the interface displacements are continuous, i.e. slip is not permitted,

and uo(x) = fo o/E 1 dr. Defining the average displacements as

uif- j jor 1o uf(x, r) r dO dr, (3.12)

UMr - j 12, Um(X,r) r dO dr (3.13)

yields the following when Eqs. (3.31) and (3.32) are employed.

ri

iif(x) = u,(X) - f-Ti(W)(3.33)
4G1
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W (x) U (X) + i I Inv -- vf -i(x) (3.34)

From which in applying Eq. (3.11), the shear-lag parameter 7- is determined.

=r-#7 +I ( ln - 3- 2 vL)} (3.35)

3.1.2.2 Determination of the Axial Fiber Stress, af(x). As with the

shear-lag parameter, the axial fiber stress, a0(x) is determined from Eq. (3.11). In

addition, Eqs. (3.17) and (3.18) are also employed in the derivation. The solution

for this stress is not determined directly; rather the formulation consists in finding

a linear second-order differential equation whose solution yields the desired stress.

In particular, the governing equation is determined through differentiation of the

shear-lag equation [Eq. (3.11)]. Hence, from Eqs. (3.10) and (3.11), the following

relation holds
drf(x) - 7( {t (x)- im(x)} (3.36)
dx

where t = -2i/rf. Now, in differentiating Eq. (3.36) and applying Eqs. (3.17) and

(3.18), Eq. (3.37) is determined.

d 2af Wx _ f WX C~()V

dX2  I-' +a AT -1 aEm l)m+ a I (3.37)- E ( Em )

Note again, it has been assumed that all constituent displacements, on average,

result solely from the axial (normal) constituent stresses. This is a consequence of

the assumed one-dimensional nature of the problem. Also, from Eq. (3.8),

m(x) 1 0,- v W(x)}. (3.38)
Vm
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Finally, in substituting Eq. (3.38) into Eq. (3.37), the following linear second-order

differential equation with constant coefficients is determined.

d2 f(x)- 3fx=-fcf(39dx 2  
= (3.39)

where
2 E1  7 (3.40)

vmEmEf

The solution to the above equation provides an expression for the axial fiber stress

as developed under the current shear-lag analysis. The final form may be expressed

as

atf(x) = A cosh(flx) + B sinh(/3x) + ufo. (3.41)

The constants A and B are determined from the appropriate boundary con-

ditions which for the unidirectional model are that (1) along the plane of a matrix

crack, the stress in the matrix vanishes due to the free boundary, and (2) the in-

terface shear stress vanishes along the plane of symmetry. For the model shown in

Fig. 3.7, these conditions require that

am X L = 0, (3.42)

rj(X= 0) = 0. (3.43)

These develop since the unit-cell is assumed to span a pair of matrix cracks with L as

the average matrix crack spacing (Fig. 3.7). More specifically, since the coordinate

system shown in Fig. 3.7 is referenced at the center of the unit-cell, the matrix

cracks occur at x = ±L/2. Moreover, since symmetry with respect to the extent

of debonding is also assumed and since the interface shear stress, -i, is assumed
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constant within debonded regions, Eq. (3.42) may be written as

L/2 - d) = 2r, d (3.44)
Vf rf

where d is the length of the debonded region. The average matrix crack density, i.e.

the number of cracks per unit length, is 1/L.

Finally, upon solving the system of equations defined by Eqs. (3.41) through

(3.44), the desired stresses are determined to be as follows:

ar/o + -cosh(/- )]V o,,o- 2 d 7i bonded region
cosh[/3(L/2 - d)] (VI r

) = - -- ri(L/2 - xj) debonded regionvf rf

= csh(x) ] m, -- r2vLfi bonded region
Um(X) Vf cosh[f(n/2 - d)] v, rf/

vm rfTi(L/2 - jxj) debonded region

rT(x) 2 cosh[fl(L/2-d) r - 2 bonded region

T1 debonded region

(3.45)

where
Em

Tm°o E1 Em(a, - )AT (3.46)

El2ro - E1 (Q - o 1)AT (3.47)

p328 E1+ 2 In -- 3- 2
v 1 (3.48)

rf2 EfEmvm LI G m V 1 vf Vm,/

Typical distributions for these stresses are shown schematically in Fig. 3.7.

Note that within the bonded region, the transfer of stresses between the constituents

is quite efficient due to the large interface shear stresses; whereas within the debonded

region, the stress transfer is less pronounced since the maximum interface shear is

limited by Coulomb friction. As mentioned earlier, the interface shear stress in the
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debonded regions is assumed constant; having magnitude ri. With the stress state

now defined, the stress-strain response can be predicted from Eq. (3.6) provided the

extent of composite damage is known. These damages are estimated by the failure

criteria outlined following the formulation of the cross-ply model.

3.1.3 Cross-ply Model. The development of the cross-ply model is similar

to the unidirectional model; however, due to the presence of the off-axis plies (e.g.

900 plies), some additional simplifying assumptions are required. As an illustration,

for the present analysis, the cross-ply lay-up is assumed to be of the form [(Om/90n)]s

so that the symmetry may be exploited during modeling. In addition, the plies are

assumed to be perfectly bonded and void of any imperfections. The interlaminar

shear stress is defined by r(x). The half thickness of the 00 ply and 900 ply are b

and d, respectively as shown in Fig. 3.8, and the unit-cell is assumed to be of unit

depth (y direction).

Matrix Crack Debond, d1  Debond, dr

I Matrix
0o Fiber b

L

god
9 00j

xt x
Transverse

Crack

Figure 3.8 Representative volume element used in the analysis of cross-ply
laminates.
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A free body diagram of the representative cell, Fig. 3.9, yields the following

equilibrium relations:

{UL(X) + ddL-(X) dx - OL(x)} b -r(x)dx = 0, (3.49)

{-T(X) + UT(X) + dUdX)d} d+r(x)dx -0 (3.50)

where OL(X) is the average axial stress in the 0' (longitudinal) plies, and UT(x) is

the average axial stress in the 900 (transverse) plies.

T(x) -T + GYT(x),x dx 0 b

T (x) T (x)

Iz
<x

Opx) + OL x),x dx

Figure 3.9 Free-body diagram illustrating the stresses considered in the cross-ply
analysis.

It is clear from Eqs. (3.49) and (3.50) that the stress transfer between the

900 ply and the 0' ply is governed by the interlaminar shear stress, r(x), which

develops along their common boundaries. More specifically,

dxL(x) dd° T(x)
r(x) b dx dx (3.51)

Equation (3.51) is a standard relation from which most cross-ply shear-lag models

begin their development [111].

In determining the state of stress within the cross-ply laminate, three entities

are considered: the fiber of the 0' plies, the matrix of the 00 plies, and the 90' plies.
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Hence, the behavior of the zero degree plies are considered on a constituent level,

whereas the behavior of the off-axis (900) plies are viewed on a lamina level. This

assumption is valid since the fibers of 90' plies are orthogonal to the loading direction

and contribute little to the strength of the composite. Additionally, to completely

define the state of stress within the representative cell, five stresses are required: the

axial fiber stress of the 00 plies, oaf(x); the axial matrix stress of the 00 plies, O-m(x);

the fiber/matrix interface shear stress in the 0' plies, 7-i(x); the normal stress within

the 900 ply, 9T(X), and the interlaminar shear stress, r(x). As in the unidirectional

case, the equilibrium relations are insufficient to solve the problem since they con-

stitute only four equations in five unknowns. For the cross-ply laminate, the four

equilibrium equations are Eq. (3.10) and Eqs. (3.51) through (3.53).

OL(X) = vfoUf(x) + Vm.m(X) (3.52)

b ( d
9 =- b + OL (x ) +  d O' T(x) (3.53)

b + db+d

The final equations are again derived from the shear-lag theory.

For the analysis of cross-ply laminates, the basic premise of shear-lag theory is

that the interlaminar shear is proportional to the difference in the average displace-

ments of the 90' ply and the 00 ply [111]. For the cross-ply laminate, this may be

expressed as

T(X) = 7-x [UL(X) - UT(X)] (3.54)

where 7 -x is the proportionality constant commonly referred to as the shear-lag

parameter [103,104]. As with the unidirectional analysis, Eq. (3.54) along with the

kinematic relations comprise the remainder of the required equations for the cross-ply

analysis. In this case, the problem consists of solving six equations in six unknowns:

O-(X), cUm(X), Ti(X), UT(X), 7(x) and 7. The derivations of 'H, af(x) and cT(X)

are now presented. The remaining unknowns follow directly from the equilibrium

relations.
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3.1.3.1 Determination of the Shear-Lag Constant, H.,. As in the

previous unidirectional case, H., may be determined directly from Eq. (3.54) since

the difference in the average lamina displacements are assumed to be proportional

only to 7(x). Once again, the analysis is somewhat involved and calls for an assumed

form of the two-dimensional (laminate) shear stresses, 7(x, z), For the present cross-

ply analysis, these stresses are assumed to given by Eqs. (3.55) and (3.56)

r(aZ) z ( + d)2 z + (b i)2 b b T(x) if z G T90

(3.55)

r(x,z) b+d- r(x) if z C To (3.56)
b

where z [-d, d] and T ±[d, b + d]. Note that in the above equations, no

coupling between the x and z variables is present. Furthermore, it is only because of

the assumed separation of variables that the solution simplifies under the shear-lag

formulation. In addition, the shear stresses satisfy the required boundary conditions,

namely

7(x, 0) = r(x, b + d) = 0, (3.57)

7(x,d)= 7(X). (3.58)

For the present system of coordinates, equilibrium requires

Oa~x Or-y Orz
+0X ayx a7zxO- +  + z -0, (3.59)

i 9 x y a , y y a 7 .y
X +  Z (3.60)

O-- + +-O . (3.61)

y 9z
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This system of equations reduces from the assumed geometry since the stresses are

independent of the coordinate y. Hence,

ocrx + =0, (3.62)
Ox Oz

Orxz 0 zz- + - 0. (3.63)

As with the previous unidirectional model, the second equilibrium equation is not

satisfied. Moreover, note that Eq. (3.56) satisfies Eq. (3.62) directly, however, due

to the separation of variables assumption, Eq. (3.55) only satisfies Eq. (3.62) in an

average sense, i.e.
0--xx +I d --z dZ = 0. (3.64)

Also, in reducing the problem to one dimension, the normal stress u,, and the

displacement u, are neglected. From this, the kinematic relation becomes

O- u(x() d( I Ij(Z d

and the displacements within the two plies are

UT(X,Z) Ar(x) {(b d) 2  (z+b' 1(2 d 2) _ (b+d)2 (Z d)}+ u(x)
G2( (b b dJ 2 -) b Z

(3.65)

UL(X, Z) =b 1 {rx 2(b + d)(z -d) - (z' - d2)}± +U,(X) (3.66)2bG12

where uo(x) is the displacement along the interlaminar boundary of the two plies

and

A b- b (3.67)

In addition, the average displacements are given by

UT(X) - UT(X,z) dz (3.68)
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and

UiL(X) = b+ UL(X,z) dz. (3.69)

Performing this integration yields

dG23  3(b-+-d)2  2b- b + 

UT~)- iLx() = d -7-(x 0- d 2bn(b)+ox (3.70)

d.T(x){ 3b2 d + Uo(X). (3.71)

Substituting these relations into Eq. (3.54), the shear-lag parameter, 7-(, is deter-

mined to be

11X d- d - 3b 2 ) 1 I (2b + 3d) (3b 2 - d 2 ) +__(__d I

6b2G12  (2b+ d)G 23  6d (d In
(3.72)

3.1.3.2 Determination of the Axial Fiber Stress, of(x), and the Average

Stress in the Transverse Ply, OrT(x). As presented earlier, the axial fiber stress

varies according to
day (x) _ it (x) - ii, (x). (3.73)

dx

Differentiating the above relation and substituting Eq. (3.52) into the resultant equa-

tion yields the following second-order linear differential equation.

d 2°'f(X) 0of X= _p12{ E7 f d}

d&2 o f(x) = fEl b (OT(X) -- OT) (3.74)

The constant f is again the shear-lag parameter from the unidirectional analysis, i.e.

Eq. (3.48). Unfortunately, under the shear-lag formulation, no solution to Eq. (3.74)

exists since the distribution OrT(X) is unknown. This results because the shear-lag

theory is formulated to consider only two entities whereas the present problem has

three: the fiber and matrix of the 0' ply and the 900 ply. As a result, an additional

assumption of the stress distribution in the 90' ply is required. In particular, it is
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assumed that the matrix cracks which develop within the 00 ply do not effect the

transverse stress 0T(X) in the 900 ply.t This is the same assumption made by Kuo

and Chou [106]. The other shear-lag models which consider cross-ply laminates do

not require this assumption since matrix cracks within the 00 ply are not considered.

With this additional assumption, the shear-lag theory requires that

d2OT(x) = A2  (3.75)
dx 2

from Eqs. (3.51) and (3.54), and where

A 2 JH {E, (b +d)} (3.76)

and
E2

= E2a + E2(a, - c 2)AT. (3.77)T E,

Equation (3.77) is recognized as the rule-of-mixtures solution for the transverse stress

in the 900 ply of a cross-ply laminate which is free of any damage. The solution to

Eq. (3.75) is

0T(X) = c1 sinh(Ax) + c2 cosh(Ax) + oT4. (3.78)

Substituting the latter into Eq. (3.74) yields

d2 orf(x) 2 '(X) = 2{o Ef d [c sinh(Ax) + c 2 cosh(Ax)]}. (3.79)

A solution to the above differential equation can be determined using the

method of variational parameters in which the problem is posed as: y" - P2y =

-f(x),l and whose solution is: y = yH + yP with yH = c3 sinh(f3x) + c4 cosh(o3x)

and yP = UY + u2Y2. The variables yl and Y2 are independent solutions of the ho-

tAlternate solutions are presented in chapter seven.
ty" denotes two derivatives of the dependent variable y with respect to the independent

variable x.
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mogeneous problem, and ul, u2 are arbitrary functions which are assumed to satisfy

y1u' + Y2U' = 0. Letting y = sinh(/3x) and Y2 = cosh(flx), the solution for the fiber

axial stress is found to be

Ef d fl 2

f(x) = C3 sinh(X) + csh( + 1 b 
2 - 02 {c1 sinh(Ax) + c2 cosh(Ax)} + or

(3.80)

where
' E + Ef(c, - af )AT. (3.81)

The latter is the rule-of-mixtures solution for the fiber stress in an undamaged cross-

ply laminate. Note that Eq. (3.80) can be determined more directly by assuming

that the particular solution, yP, is of the same form as the forcing function, f(x),

i.e.

y= c1 sinh(ix) + c2 cosh(ox) + C3

=__32 -f Eld [cl sinh(Ax) + c2 cosh(Ax)]

= -f(x). (3.82)

From Eqs. (3.78) and (3.80), the axial matrix stress in the 0' ply may be determined

from Eq. (3.83).
1 I" b + d d 01

0 v---(X) = 1 -{-b- - bT(Xtlx)} -vs af(X) (3.83)

where OT(Xtl,) is O'T(Xt) evaluated at Xt = x as defined below. Finally, the interface

and interlaminar shears, Ti(x) and T(x), can be determinedfrom Eqs. (3.10) and (3.51),

respectively. Note that since the stress fields in the 0' ply are not symmetric, in gen-

eral, the extent of debonding on the left side of the model (x < 0) may not equal the

extent of debonding on the right side of the model (x > 0). The two debond lengths

will be denoted as dl and dr, respectively. The boundary conditions required to solve
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for the unknown constants, cl through c4, in Eqs. (3.78) and (3.80) are dependent

upon the damage configuration. These are now investigated.

As previously mentioned, uniform crack spacing is assumed within each ply;

however, nothing has been stated about the relative location of the transverse and

matrix cracks. For example, the two configurations shown in Fig. 3.10 are both valid

for Lt = L/2 where Lt is the spacing of the transverse cracks in the 900 ply and L is

the spacing of the matrix cracks in the 0' ply. Within the actual composite, a large

A Matrix
X X Crack

00 > - - - - -- - - - - L - - - - - - - - - - - -

A=0

900 - - -- - Lt- - - - -

Xt Transverse
Crack

A

x x

00 r ---- --- --- --- -L --- --- --- ------ --- A= L/4

900-------- -- ----------- t--------- .---- -

Figure 3.10 Two possible damage configurations for a cross-ply laminate with uni-
formly spaced cracks in both the 900 ply and the 0' ply. For both figures
shown, the transverse crack spacing is one-half the crack spacing of the
00 ply.

number of configurations will exist. The proposed analysis assumes that all possible

configuration have an equal probability of occurring and that in , every configuration

is represented. To ensure all possible configurations are considered, the relative crack

spacing, A, as illustrated in Fig. 3.10, is assumed to span [0, Lt/2] if Lt < L and
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[0, L/2] if L < Lt. For convenience, a global coordinate system, & G [0, L], is used.

Equation (3.78) is valid between a pair of transverse cracks only. Hence if Lt < L

(i.e. the representative volume element spans more than two transverse cracks), a

local coordinate system, xt, is required for each pair of adjacent transverse cracks

(Fig. 3.10). It may be shown that

L
X xt X - (3.84)2

where
w{ Lt (n + 1/2) + A if Lt < L (3.85)

iLt/2 + A if Lt > L

-1 if 5~- A < 0

n t =-otherwiseIn t L )

- 1I if < A

+1 if2 > A

and Int o represents the integer function.

Clearly, the constants cl-c 4 appearing in Eqs. (3.78) and (3.80) are not only

a function of the extent of matrix cracking, but also depend on the relative crack

spacing, A. Three cases need to be considered: (1) transverse cracking only; (2)

matrix cracking only, and (3) transverse and matrix cracking. These are the same

configurations as investigated by Kuo [103], and are now considered.

3.1.3.3 Transverse Cracking Only. Upon loading of CMCs, trans-

verse cracks will develop prior to any failure in the 0' ply. The representative volume

element for this case is assumed to span two transverse cracks (-Lt/2 < x < Lt/2).

In order to determine the axial stress in the 900 ply and the axial stress in the

fiber of the 0' ply, four boundary conditions are required to solve for the unknown

constants (Cl , C2, C3 , and c4) in Eqs. (3.78) and (3.80). Two boundary conditions,
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0rT(±Lt/2) = 0, are derived from the fact that no load is carried in the 900 ply along

the plane of the crack. A third boundary condition, daf(O)/dx = 0, results from

symmetry. Finally, since the matrix in the 00 ply has not failed, the final boundary

condition requires im.(Lt/2) = if(Lt/2) where im(x) and if(x) are the axial dis-

placements of the matrix and fiber in the 00 ply, respectively. This condition requires

the strain in the matrix and fiber of the 00 ply to be equal (i.e. E, = 6f). With these

four boundary conditions, the stresses within the 900 ply and fiber in the 0' ply may

now be determined [Eqs. (3.86) and (3.87)].

aT(X) =0 { cosh((3)8'1
cosh (Ax) (3.86)

cosh(Ax)

07(x) = c4 cosh(o3x) + T cosh(ALx/2) + Oro (3.87)

where
T = Ed 32

E1 b P 2 - A2o' (3.88)

PLt { 2 E d A 2  o Ef
C4A El bA2 - 2 ° tanh (ALt/2) -o +  - or' + Ef'(a,-1f)AT

2 sinh (dLt/2) {~ 2 l Eb A2  -2 T f E 1 (ci-cfAJ
(3.89)

"1 = Vf 0 + Vm m  (3.90)

Em
Um = -a + Em(ac - am) AT (3.91)

3.1.3.4 Matrix Cracking Only. If only matrix cracks exist, then the

following conditions apply

am(-L/2) =0, (3.92)

cm(L/2) =0, (3.93)

dUT(0) - (3.94)
dx
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CT = Cf. (3.95)

For this case, the stresses are determined to be

UT(X) = c2 cosh(Ax) + o, (3.96)

af (X) = c4 cosh(,3x) + c2Tcosh(Ax)/au + o (3.97)

where

L3 { ± d U- bVa'- 17" + A+ (Cf - 2) ATI
dE 2 (3.98)

C4  Bdvf cosh(/L/2) - A 2 sinh (L/2)

b LEs

2 B { b + d - bVf [C4 cosh (/L/2) - u (3.99)

A: AL (3.100):2 { T E1}sink (AL/2)' 310

1

b T(3.101)
1+ -f cosh (AL/2)

3.1.3.5 Transverse and Matrix Cracking. For a general damage state

consisting of both transverse and matrix cracks, the amount of stress which is trans-

ferred to the fiber of the 00 ply along the plane of a matrix crack is unknown. Further,

since both the matrix of the 0' ply and the 900 ply have failed, CT : cf and cm 4 lcf.

Hence in order to solve the problem, the assumption that the local stress in the

90' ply near a matrix crack in the 0' ply is not influenced by this matrix cracking is

made in this formulation as in the previous study [104]. Therefore, the stress within

the transverse ply is again given by Eq. (3.86) since OT(±Lt/2) = 0. Given 0T(x),

the remaining unknown constants [c3 and c4 in Eq. (3.80)] may be determined since

3-28



the fiber stress along the crack plane is known exactly, i.e.,

1 rb+d }
o'f(x = ±L/2) = - - - ' . (3.102)

Vf b10=±1

In addition, the fiber stress is assumed to vary linearly within the debonded region

according to the following.

1 {b d0 - dT(Xt L} 2-i L _ x} (3.103)

Within the bonded region:

a7(X) = c3 sinh(3x)+ c4 cosh(3x) + Tcosh()urt) + o (3.104)

where c3 and c4 depend on the damage configuration, as shown below. Prior to any

debonding

C3 = 2vf sinh (/L/2) b {'T (Xt= ) - U'T (Xt .L 2 )} (3.105)

+ cosh(L/2) cosh ( Xt, )- cosh Ax=

C= I 1 + bd U (q - i d ~ UT C3 sinh (QL/2)
2v cosh (P L /2 ) -b b - 'x=L 2  /.J

cosh (Axt1 lx2) 
(3.106)

cosh (ALt/2) f,

However, with the onset of debonding, these constants become

X1 cosh 0, - X, cosh q1 (3.107)ca = sinh(¢ - 0,) '(317

xr sinh 01 - X, sinh (3.108)
c4 = sinh(¢l - ,)(
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where q1 0(-L/2 + d), 0, = (L/2 - d) and

- cosh ( Axt,~
X1 cosh (ALt/2) - 0o (3.109)

cosh (Ax(3.
Xr =a - T cosh (ALt/2) - 0(1

1 {b+d dT2Xt d (3.111)
b - b x=-L/ 2J r f

1fb~d d }1 2

Ur I b a -b+T(X La) - 2-ridr. (3.112)

If d, = L/2 and 0 < dr < L/2 then

C3  {h( r - C4 cosh(r) - Tcosh (Axt-r0
sinh f coshL /) 07, (3.113)

C4 = Uf - cosh (ALt/2) - *. (3.114)

If dr = L/2 and 0 < d, < L/2 then

I cosh (Axtl= , 0
sinh (p 5  -C4 cosh (01) -T (At- 1 (3.115)

C3 = sinh() - o - cosh(ALt/2) f

C4 = '17 - cosh (ALt/2) -o a . (3.116)

Figure 3.11 illustrates the microstresses in the 900 ply and the fiber and matrix

of the 0' ply which result in a [03/90/03] laminate with u = 200 MPa, L = 3Lt, and

A = Lt/4. The influence of the 900 transverse cracks on the fiber and matrix axial

stress in the 00 ply is evident, as well as the fact that the axial stresses in the 90' ply

[OrT(x)] are not influenced by the matrix cracks in the 00 ply. As mentioned, the

fiber stress gradients are assumed linear in any debonded regions within the 0' ply
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of the cross-ply laminate. An example of the microstresses which may develop in a

laminate with fiber/matrix debonding is shown in Fig. 3.12. The stresses are given

for o = 300 MPa, L 2L, and A = 0 in this figure.

300
=200 MPa

200 ~(;f(X)
,.. L =3Lt

2 A =Lt/4

In 100 S(T(x)

0
-1.0 -0.5 0.0 0.5 1.0

2x/L

Figure 3.11 Microstresses for a [03/90/03] laminate where the crack density of the

matrix cracks in the 0' ply is one-third the transverse (900) crack den-
sity. Matrix cracks are located at abscissa values of ±1.

Clearly, the laminate stresses are contingent upon a priori knowledge of the

damage configuration. The latter, of which, requires the establishment of a set of

failure criteria for each of the damage mechanisms considered in the analysis. These

are discussed in the following sections.

3.2 Failure Criterion

The predominant modes of damage within the unidirectional laminate are ma-

trix cracking, interface debonding and fiber failure. For the cross-ply laminates,

transverse cracking of the 900 plies is also considered. Failure criteria for these

damage mechanisms are now addressed.
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800 a)= 300 MPa

A=0

600 - L =2Lt

400

aTymx)200 (T m(X)

0
-1.0 -0.5 0.0 0.5 1.0

2x/L

Figure 3.12 Microstresses within a [03/90/03] cross-ply laminate when fiber/matrix
debonding is considered.

3.2.1 Transverse and Matrix Cracking. The transverse and matrix crack

spacings are determined by means of the critical matrix strain energy (CMSE) crite-

rion in which the average crack spacings, L and LT, are determined via Eqs. (3.117)

and (3.118).
Umo + Un(L) = Ur, for _ (3.117)

UTo + UT(Lt) = U, for o-> a 90 (3.118)

The left hand sides of Eqs. (3.117) and (3.118) represents the instantaneous strain

energies in the matrix of the 0' ply and the transverse ply, respectively. The quanti-

ties Urno and UT, are the (rule-of-mixtures) strain energies in the 0' and 900 ply for

laminates free of any damages. The remaining terms, Urn(L) and UT(Lt), account for

the redistribution of energies as a result of damage formation. The right hand sides

of Eqs. (3.117) and (3.118) are the critical strain energies which can be determined

provided the critical composite stresses are known a priori. Kuo and Chou provide
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estimates for these stresses [106]. Also, Ucm and UCT, are assumed constant, known

laminate properties.

The CMSE failure criterion is discussed in detail in appendix E; however, in

summary, the concept of a critical matrix strain energy presupposes the existence

of an ultimate or critical strain energy limit beyond which the matrix fails. Beyond

this, as more energy is placed into the composite, the matrix, unable to support the

additional load, continues to fail. Initially, the composite is assumed to be undam-

aged. As the applied load increases from zero, the energy within the constituents

of the composite increases. With further loading, since the strain to failure of the

matrix is less than that of the fiber, the matrix eventually reaches its maximum

load carrying capacity. The stress level at which the matrix reaches this maximum

limit is assumed to be the critical composite stress, ar,,. This process is illustrated in

Fig. 3.13. The reference point, = a=,., is chosen since experimentally the composite

response is linear to this point (i.e. a < acr) due to the limited microstructural

damage. As more energy is added to the system with further loading, any additional

energy going into the matrix is assumed to produce more damage. The assumption

t t
Ur

U cr Cr,( Ocr

Figure 3.13 Critical matrix strain energy (CMSE) criterion.

that the matrix strain energy remains constant is analogous to a total strain energy
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failure theory for isotropic materials in which now a single homogeneous matrix block

with applied tractions o-, ri(x) and 7-i becomes the focus of the investigation.

Consider the stress-strain response during monotonic loading of a homogeneous

brittle ceramic [Fig. 3.14 (a)]. The stress at failure is often defined as the ultimate

(a) (b)

Stress Matrix strain energy

a0 ...........
Ult

Strain Applied Stress

Figure 3.14 Assumed material response: (a) stress-strain response for a monolithic
ceramic; (b) strain energy versus applied stress for a ceramic composite.

stress of the matrix and is considered a material property. Clearly, the same ar-

gument may be posed using an energy criterion. That is, failure occurs when the

matrix strain energy reaches its ultimate or critical strain energy, Ucrm [170,174]. In

a similar fashion, matrix failure in a non-homogeneous brittle system (e.g. CMC)

will result when the matrix strain energy reaches this critical value. As more energy

is placed into the system, the matrix fails such that all the additional energy is trans-

ferred to the fibers [Fig. 3.14 (b)]. Failure may consist of the formation of matrix

cracks, the propagation of existing cracks or interface debonding. The failure pat-

tern within any two CMCs will differ due to the variability (i.e. stochastic nature) of

material flaws (size and location), as well as laminate geometry. However, the basic

premise of the micromechanics approach is that the average behavior of the laminate

may be modeled. Hence, if an equivalent or average damage configuration can be

determined, the composite stress-strain response can be predicted. Two advantages
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of the CMSE criterion are that the crack densities are determined analytically and

that since no restriction is placed on the location where the new cracks form, the

CMSE is able to capture a continuous evolution of matrix cracking.

3.2.2 Interface Debonding. Interface debonding results from the large

shear stresses which develop along the fiber/matrix interface in the presence of ma-

trix cracking. Since the debond is in reality a crack which propagates along the

fiber/matrix interface, the extent of debonding can by estimated using classical frac-

ture mechanics techniques [24, 45, 81]. However, to avoid the complexities which

accompany such approaches, a simple and more common approach is to employ

a maximum stress criterion in which the interface is assumed to debond when-

ever the interface shear stress exceeds the ultimate bond strength of the interface,

Tuit [7,28,113]. The parameter Tujt is assumed to be a material constant, and, if

known, the extent of interface debonding can be determined by ensuring that the

maximum shear along the interface never exceeds this maximum amount, i.e.

(T)max ---: T t. (3.119)

For more insight into the debonding process, note that the interface shear

reaches a maximum along the plane of the matrix crack as illustrated in Fig. 3.15.

At some level of applied stress, the maximum interface shear will exceed the bond

strength of the interface, i.e. -i(X)max 7-rut. As the interface debonds, the magni-

tude of Ti(X)max decreases. Hence, for the coordinate system illustrated in Fig. 3.15,

Eq. (3.119) requires that

Ti (x = L/2 - d) = rt. (3.120)

The shear stress in the debonded region is typically assumed to be constant and

governed by Coulomb friction with magnitude Tj [103,113].
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Figure 3.15 Evolution of the interface shear stress as a function of debonding.

3.2.3 Fiber Fracture. The percentage of fractured fibers, D, is deter-

mined via a unique Weibull failure distribution in which fiber breakage depends on

a function of the instantaneous fiber strain energy rather than the fiber stress as

traditionally assumed. In this manner, the traditional Weibull shape and scaling

parameters do not need to be determined. Furthermore, no inconsistencies arise

since compressive loading conditions are not considered, i.e. 7 > 0. The statistical

distribution for the current analysis is shown in Eq. (3.121) where Ucrf is the critical

fiber strain energy and ?i^ is the Weibull modulus. Presently, the Weibull modu-

lus is (empirically) based upon the quasi-static response of the ceramic laminate.
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Appendix F examines, in depth, the break-up of the fibers in ceramic composites.

1 exp(3.121)

3.3 Loading Considerations

For the current analysis, three loading conditions are considered: quasi-static,

repeated and fatigue loading. This section investigates some of the unique modeling

considerations for each of these loading conditions.

3.3.1 Quasi-Static Loading. For modeling purposes, the predicted stress-

strain response is accomplished in two steps. For stresses below the critical composite

stress (o'cr), as defined earlier, the composite strain is determined using the tradi-

tional rule-of-mixtures expression

- Ec (C- cth) (3.122)

where ecth is the residual thermal strain resulting during processing. For applied loads

exceeding the critical stress, the shear-lag relations are employed and the composite

strain is determined from Eq. (3.6). In this manner, the analysis is more efficient.

Greater detail on the solution scheme is provided in appendix B.

1 = Ia(x) dx + (af - a,)AT (3.6)

3.3.2 Repeated Loading. For cyclic loading environments, stress-strain hys-

teresis is a concern. The origin of hysteresis is a function of the frictional slip which

occurs along any debonded regions during loading and unloading of CMCs. Since

Ti has been assumed constant in the present analysis, as is typical of most stud-

ies [8,106,113], the extent of interface slip during loading and unloading may be

determined analytically [132,153]. The ratio of the slip distance over the debond
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length, D, is determined by ensuring that all constituent deformations "outside the

slip zone" are elastic [174]. For a partially bonded interface in a unidirectional lami-

nate, for example,

1(I vmcorf )- lt "lai
2 2vfrid ri3dtanh[O(L/2 - d)]) unlodinDu (I vma~r + 7-lturloading.j3 - n2 2vfrid -rP dtanh[3(L/2 - d)] reloading.

where D is 73 at U = Umin (unloaded). Since slip cannot occur within any bonded

regions, 0 < 7 < 1. For a completely debonded interface,

[1( vmEmrf crmax unloading
D3 =f - (1 ---D)E1 L r (3.124)

1 __vmEmrf U - Umi, reloading.

-2 (v(1 - D)EjL Ti l

For the cross-ply laminate, the expressions for fi are algebraically more complicated.

The specific equations are provided in appendix C which also includes a detailed

discussion of frictional slip and the resulting hysteresis.

3.3.3 Cyclic Loading. Under fatigue (cyclic) loading, the stress-strain

response is characterized not only by hysteresis, but also by a significant development

of permanent strain, i.e. strain ratchetting. As mentioned in the previous chapter,

the shape of the hysteresis loop is dependent on the extent of composite damage

and the interface shear, Ti. Strain ratchetting, on the other hand, is more a function

of fiber pull-out [153]. Unfortunately, traditional shear-lag models have no means

for accounting for the latter, and therefore some additional work is required. The

procedure undertaken to model fiber pull-out, and subsequently the observed strain

ratchetting, is now discussed.

3.3.3.1 Strain Ratchetting. Strain ratchetting occurs when fractured

fibers permanently slip (e.g. fiber pull-out). As illustrated in Fig. 3.16, this slip
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results in a finite crack opening of the fiber which is governed, in large part, by the

interface shear, ri. This fiber crack opening displacement is assumed to be of length

6(N) (Fig. 3.16). Upon unloading, the fiber separation is unlikely to vanish due to

Poisson and "knife-edge" effects, as well as debris and fiber warping which all act

to prevent the crack opening from closing. b(N) is a measure of the average fiber

pull-out distance and depends on both the state of composite damage (L, d, D) and

the interface resistance, 7-. For simplicity, the interface shear and the crack opening

displacement are assumed to remain constant during a cycle [i.e. ri ri(N) and

6

8(N) Fiber

L

Figure 3.16 Crack opening displacement, 6(N), resulting from gross slip of a frac-
tured fiber.

It has been observed in several experimental studies that the extent of con-

stituent damage reaches steady-state during the first few cycles (N < 20), i.e. the

elastic modulus remains almost constant after its initial drop over these first few

cycles [54, 74, 86, 153, 210]. Interface slip and debonding, on the other hand, may

continue with cycling, at least as long as Ti(N) varies [184]. Unfortunately, the tra-

ditional shear-lag approach provides no means of capturing these phenomena once

the interface completely debonds. Under the current shear-lag formulation, for ex-

ample, the permanent strain upon complete unloading (or = 0) for a completely

debonded interface is

fi(N)L (3.125)S=2Ef rf

where the residual strain upon complete unloading, as predicted by the present anal-

ysis, is denoted by cp. Hence, from Eq. (3.125) and as evidenced in Figure 3.17, strain
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Figure 3.17 Constituent stresses after unloading of a unidirectional laminate with a
completely debonded interface. Solutions are shown with and without
fiber pull-out.

ratchetting either ceases once the interface debonds completely if T/(N) remains con-

stant or decreases if ri(N) declines. The latter is illustrated in Fig. 3.18, and is, of

course, physically unreasonable. If strain ratchetting is to be successfully modeled,

the present shear-lag formulation must be modified to account for fiber pull-out (e.g.

an estimate for 6(N) is required).

As fractured fibers slip and pull-out from the surrounding matrix, the local

stress in adjacent unbroken fibers increases, and hence, the average stress in an un-

damaged fiber, as modeled under the shear-lag approach, also goes up. One approach

to account for the additional stress in unbroken fibers resulting from gross slip of

adjacent fractured fibers is to adjust the axial fiber stress by an amount Au(N).

This is illustrated in Fig. 3.17. If Aor(N) is chosen appropriately, a monotonically

3-40



increasing permanent strain develops according to

EpL2 { Aoi(N) + - (N) L ) d. (3.126)P--LEf 1o rf (

Figure 3.19 illustrates the strain ratchetting behavior when fiber pull-out is mod-

N=10

250

N=1000

200

Ct 150

100

50

0.0000 0.0010 0.0020 0.0030 0.0040 0.0050

Strain (m/m)

Figure 3.18 Stress-strain response of a ceramic matrix composite in which fiber
pull-out is not modeled.

eled according to Eq. (3.126). For the example shown, Ao(N) is arbitrarily cho-

sen. Appendices G and H outline the development of the stress Aot(N) for the

unidirectional and cross-ply laminates, respectively. The solutions are determined

analytically by introducing a region within the laminate which does not slip during

unloading. The latter accounts for the fact that upon unloading of the actual com-

posite, the fiber crack opening displacement does not vanish. As expected, AU(N)

is dependent on the maximum applied stress and the interface shear.

3.3.3.2 Fatigue Life Predictions. The laminate is assumed to fail

when the energy available for fiber pull-out, Up, exceeds the work required to pull a
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.Figure 3.19 Stress-strain response of a ceramic matrix composite in which fiber

pull-out is modeled.

fractured fiber completely from the matrix, Wp. In this study, the energy available

for fiber pull-out, Up, is defined as the additional fiber strain energy which results

from the stress Au(N), and Wp is given by reference 35.

This completes the development of the basics of the analysis methodology.

Predicted results are compared with experimental data in chapters four and five.

Quasi-static, repeated and cyclic loadings of unidirectional and cross-ply lay-ups are

all considered.
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IV. Unidirectional Behavior

With the theory in chapter three, the material stress-strain response of sev-

eral unidirectional laminates is now investigated. Recall that based on the model

development, the state of stress within a unidirectional laminate is defined by three

components: the axial fiber stress, orj(x); the axial matrix stress, ornm(x), and the

shear stress which develops along the fiber/matrix interface, ri(x). These stresses

are defined by the following equations which have been reproduced from chapter

three.

07(x) = Acosh (O3x) + Bsinh (Ox) + u-/ (3.41)

Um(X) I {0, - VO(x)} (3.8)
Vm

Ti(X) = rf daf(x) (3.10)
2 dx

The parameters A and B in Eq. (3.41) depend on the composite's state of damage,

and once this is determined the composite strain may be calculated from Eq. (3.6)

as shown below.

C 1  /Lf(x) dx + (af - ac)AT (3.6)

Hence, once the laminate properties and loading environment are known, the

unidirectional stress-strain response may be determined from the above system of

equations and the proposed failure criteria. For the current analysis, three compos-

ite systems are investigated. These are SiC/CAS, SiC/CAS-II and SiC/1723. The

material property data for these systems are provided in Table 4.1. Note that in
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Table 4.1 Material property data for SiC/CAS, SiC/CAS-II and SiC/1723
laminates.

SiC/CAS [103][ SiC/CAS-II [75] 1 SiC/1723 [209]

E1 (GPa) 139 127 145
E 2 (GPa) 120.5 109.5 90
Vf 0.38 0.35 0.45
rf (Pim) 7.5 7.3 6.25
af (10- 6 / C) 3.1 3.1 3.1
a. (10- 6/C) 4.5 4.5 4.36
AT ("C) -1000 -1000 -1100
ri (MPa) 20 15 20
r7lt (MPa) 220 220 220
amc (MPa) 100 120 220
a,, (MPa) 220 140 (210 exp.) 400
rn 2.0 6.5 4.0

addition to the material property data, the present failure criteria require that the

laminate's critical composite stress ('icr) and the Weibull modulus (rh) be known.

The critical composite stress is required to define the critical matrix strain energy,

Ucr, which is used to determine the matrix crack densities under the CMSE failure

criterion. In addition, recall that owc, is used as a bifurcation point for the current

analysis (Fig. 3.1). For applied stresses less than the critical composite stress (e.g.

a < acr), rule-of-mixtures equations are employed. For a > oc, the shear-lag for-

mulation is invoked in order to account for the accumulation of matrix cracks within

the composite structure. In reality, matrix cracking initiates at a much lower stress

levelt; however, since these matrix cracks (or < O'cr) do not dramatically influence

the composite stress-strain response, the laminate can be modeled as if it is void of

any damage.

In addition to the critical composite stress, ac,, the Weibull modulus, M, is

also required for the current analysis. In particular, r is used to determined the

percentage of fractured fibers in the laminate. Both of these parameters, cr and

tThe stress corresponding to the initiation of matrix cracking is denoted by 0 ,c.

4-2



?h, may be obtained from empirical data; however, they may also be estimated

analytically as outlined in appendix I. The influence of the Weibull modulus, m^, on

the predicted stress-strain behavior for a SiC/CAS composite system is illustrated

in Fig. 4.1. The parameters a,, and r are listed in Table 4.1 for the three systems

investigated.

A A

m=5.5 m=2.0
400 4O0 m=1.25

300

200

100 A experimental values

present analysis

0.000 0.002 0.004 0.006 0.008 0.010

Strain (m/m)

Figure 4.1 Stress-strain response for various levels of fiber failure. Results are
shown for r = 1.25, 2.0 and 5.5.

The remainder of this chapter investigates the material response of the unidi-

rectional laminate under quasi-static, repeated and fatigue loadings. The damage

mechanisms considered are matrix cracking, fiber/matrix interface debonding and

slip, fiber fracture and fiber pull-out. The stress-strain response under monotonic

tensile loading, and the fatigue life response (S-N relationship); modulus degrada-

tion, and stress-strain hysteresis under repeated and cyclic loadings obtained from

the present analytical methodology are compared with their experimental counter-

parts. They are in a good agreement with one another.
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4.1 Quasi-Static Loading

Predicted results for the three composite systems, SiC/CAS, SiC/CAS-II and

SiC/1723, are compared with experimental data in Fig. 4.2. As evident in Fig. 4.2,

the present analysis provides a very good representation of the experiments [75,

103,209]. For the SiC/CAS system, for example, the predicted response matches

especially well with the empirical data. For strains below 0.152%, the laminate

stiffness is well approximated by the rule-of-mixtures analysis. Below this knee in

the stress-strain curve, the amount of matrix cracking is insufficient to noticeably

effect the material response. However, the presence of these cracks may still be

important for time dependent effects since these fractures can expose the interface

to the surrounding environment and permit unwanted oxidation of the interface.

The matrix crack density increases to a saturation spacing of about 0.142 mm which

is reached at 0.361% strain as shown in Fig. 4.2. Fiber fracture initiates at 0.259%

strain and provides a critical fraction of D*=0.42 at laminate failure (c 0.841%).

SiC/1723
600

500 0

SiC/CAS-II
S400 0 SiC/CAS-Il

300

200 A experimental values [209]

1 experimental values [103]
100 experimental values [75]

present analysis

0. 0 0.002 0.004 06.006.008 0.010 0.012

Strain (rn/m)

Figure 4.2 Unidirectional stress-strain response for several composite systems.
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Note that the SiC/CAS-II results in Fig. 4.2 are generated with a,, defined as

the stress at which matrix cracking initiates, Ymc, rather than the laminate's pro-

portional limit. This is done to illustrate the model's robustness to variations in a,,.

Beyond the critical composite stress, the influence of other parameters such as the

interface shear (rj and T, It) and fiber volume fraction on the material behavior is also

of interest. Such data not only provide insight into the evolution of damages within

CMCs, but also may be used to quantify these same parameters through empirical

fits. The latter can be quite beneficial since the experimentally measured values of

Ti and TULt, for example, are questionable. As a result, numerical models are often

used to estimate these parameters. Figures 4.3 through 4.5 illustrate the predicted

sensitivity to variations in the interface shear stress, 7j, the interface strength, T,,lt,

and the fiber volume fraction, vf. For each figure, the stress-strain response, crack

density evolution, and debond progression are shown. The debond length is plotted

in terms of the fiber diameter, i.e. d/(2000 • rf).

As illustrated in Fig. 4.3, the extent of matrix cracking increases with rises

in the interface shear stress. This is to be expected since the rate at which load

is transferred between constituents also increases with ri, and more efficient load

transfer reduces the shielding effect described in chapter two. In other words, the

matrix crack density increases as the interface becomes stronger because the average

matrix stress also increases. It is interesting to note that although the variation in

the crack densities shown in Fig. 4.3 is rather significant, the stress-strain responses

of the four conditions investigated are very similar. This results because of the

corresponding changes in the debond lengths. Hence, an important consequence

is that when using empirical data to estimate the properties of the interface, it is

insufficient to simply fit the macromechanical (stress-strain) data. For an accurate

prediction, the state of microstructural damage must also be correctly modeled. These

are discussed in greater detail in appendix E.
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Figure 4.3 Stress-strain response and damage evolution for a unidirectional CMC
as a function of the interface shear, Ti.

As illustrated in Fig. 4.4, the interface shear strength, Tut, also impacts the

evolution of damages within the composite. However, the effect is much less pro-

nounced compared to ri. On the other hand, the damage progression is strongly

dependent on fiber volume fraction (Fig. 4.5). This is expected since, as discussed

in chapter two, the ability to dissipate energy and arrest crack growth is due solely

to the presence of the fibers. The crack densities, in Fig. 4.5, increase with 'v since

constituent load transfer again increases.
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Figure 4.4 Influence of the maximum allowable shear, r-jt, on the stress-strain re-
sponse and damage evolution of a unidirectional CMC.
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Figure 4.5 Impact of fiber volume fraction on material behavior.
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4.2 Repeated Loading

Under conditions of repeated loading in which the applied load is cycled,

stress-strain hysteresis develops due to the frictional sliding which occurs along any

debonded regions. Hence numerically, the strain must be predicted during initial

loading, unloading and subsequent reloading. For the first part, i.e. initial loading,

this is quasi-static loading and hence the composite's behavior can be determined

using the solution scheme of the previous section. In determining the actual hystere-

sis, i.e. unloading and subsequent reloading, the extent of frictional sliding must be

determined. This derivation is provided in appendix C.

Several hysteresis loops are shown for a unidirectional SiC/CAS laminate in

Fig. 4.6. As expected, the size of the loops, which characterizes the energy dissi-

pated, increase with the applied stress. Unfortunately, few data are available for

400

300

200

100

00.000 0.002 0.004 06.006 0.008 0.010
Strain (rn/m)

Figure 4.6 Repeated loading response of a unidirectional, SiC/CAS laminate. The
maximum stress for the hysteresis loops shown are 250, 325, and 400
MPa.
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unidirectional CMCs under conditions of repeated loading. In particular, only the

data from Pryce and Smith was found by the author to be representative of this

loading environment [152]. For the analysis, the material properties are taken as:

Ef = 190 MPa, Em= 90 MPa, vf = 0.34, rf = 7.5E-6 m, cf = 3.3E-6/°C,

m = 4.6E-6/°C, AT = -1200'C, ri = 10 MPa, and r-,It = 220 MPa. Furthermore,

based upon the data reported by Pryce and Smith, Ocr is selected as 125 MPa to

match the proportional limit. A comparison of their experimental results with the

present analysis is presented in Fig. 4.7. Although the present model's response is

slightly stiffer, the salient features are present and the predicted residual strain after

unloading is in good agreement with the empirical data. The fact that the linear (un-

damaged) portion of the 190 MPa test is stiffer than the empirical data may indicate

that the material property data used is questionable. Further, the empirical data

are obtained from a fatigued specimen; whereas, the predicted response assumes an

initial undamaged laminate in both the 210 MPa and 225 MPa tests. The model

stiffness can be relaxed by considering additional damages.

4.3 Cyclic Loading

The unidirectional fatigue response is characterized by a degradation in the

interface shear stress, stress-strain hysteresis and strain ratchetting, modulus degra-

dation, and S-N behavior. Each of these is now addressed.

4.3.1 Degradation in the interface shear. Evans et al recently published

experimental hysteresis data along with numerical estimates of ri(N) for a unidirec-

tional SiC/CAS laminate subjected to tension-tension fatigue [54]. This variation in

shear, Ti(N), as provided by Evans et al is given by Eq. (4.1)

ri(N) = r-0 + (I - exp - wN) (Tim i - Ti) (4.1)
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Figure 4.7 Repeated loading response of a unidirectional, SiC/CAS laminate at
maximum applied loads of 190, 210 and 225 MPa. Note that the stress-
strain curves for rmax = 210 and 225 MPa have been shifted along the
abscissa by 0.125 and 0.25, respectively, for clarity. The experimental
data are from reference 152.

where 7-0 is the initial shear stress (i.e. ri(N) at N = 1, before cycling). The quan-

tity imi.n is the final steady-state shear during cycling, and w and A are empirical

constants. Based upon the previous study [54], the numerical constants A and w are

determined: A=2.25 and w=0.00275. A typical profile of Eq. (4.1) is illustrated in

Fig. 4.8. An important consequence of Eq. (4.1) as presented by Evans et al is that

the interface shear is assumed to degrade rapidly over the first one hundred or so

cycles (Fig. 4.8). As illustrated in the following sections, this is somewhat incon-

sistent with the findings of the present study. Evans et al estimated the variation

in the shear stress, ri(N), by fitting the size and shape of their predicted hysteresis

loops with the experimental data; therefore, the accuracy of the data is unknown.

In addition, the estimates are based upon data "confined to the parabolic range"
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Figure 4.8 Assumed degradation in the interface shear stress, ri(N), during fatigue

loading.

of stress-strain hysteresis loops; whereas, the experimental hysteresis loops are ob-

served to change in shape from parabolic to linear [54]. These are not accounted

for in the determinations of Ti(N), and therefore, the estimated range for the shear

degradation is likely to be an upper bound.

4.3.2 Stress-Strain Hysteresis and Strain Ratchetting. As mentioned ear-

lier, the shear-lag formulation has no inherent means of capturing the extensive strain

ratchetting which occurs during fatigue testing. This ratchetting phenomenon results

from permanent slip of fractured fibers, and is accounted for with the superposition

of a constant stress, Ao(N), according to Eq. (4.2).

o)+ Aor(N) _ 2(N) (L/2 - x) (4.2)
f (x) - -(- 4) r-
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Further, Ao(N) represents an approximation for the additional stress experienced

by an undamaged bridging fiber when adjacent fibers fracture and slip according to a

uniform distribution. Recall that an analytical solution for AU(N) is determined by

assuming that a portion of the shear-lag model remains permanently bonded. This

permanently bonded region (PBR) represents areas where slip is obscured, and it is

the assumption that the shear stress in this region is irreversible that leads to the

solution for Aor(N). The derivation of Au(N) is presented in appendix G with the

final form of the expression being shown in Eq. (4.3).

Ao(N) .E + DvEf 2ri(N) L (4.3)
vj(1 - D)E 1  rf

As expected, the extent of fiber pull-out is dependent on the maximum applied stress

(Umax), the interface resistance [Ti(N)], and the composite's state of damage (D, L

and d).

The irreversibility in shear is attributed to several physical mechanisms, in-

cluding surface roughness and debris along the interface. During cycling, however,

as the interface wears some slip reversal is likely, and should be considered in the

analysis. Therefore, define Or (N) C [0, 1] such that the quantity 1- 0, (N) represents

the percentage of the PBR which is allowed to unload elastically; then upon refor-

mulating the problem, the additional fiber stress in Eq. (4.3) is modified according

to

A0,(N) [1 ¢q(N)] Au(N) - 0,(N) [Ti(N)L + Ef(af - al)AT (4.4)
L rf

In this manner, some additional degradation along the interface, separate from Ti(N),

is considered. Several solutions obtained using Eqs. (4.3) and (4.4) are now compared

with their experimental counterparts as presented below.

Figure 4.9 shows the experimental hysteresis loops provided by Evans et al

along with predicted loops from the present analysis. The predicted results in
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Fig. 4.9 are determined with rio = 20 MPa and =m,= 5 [54]. Note that because of

the assumed form for the degradation in the interfacial shear stress, i.e. Eq. (4.1)

and Fig. 4.8, the predicted response of the laminate will not change after (approx-

imately) one-hundred cycles since no further damages or material degradation are

assumed. Hence, the labels (N = 1, etc) indicating the number of fatigue cycles in

Fig. 4.9, as well as in all subsequent stress-strain hysteresis plots correspond only

to the empirical data. The fact that no additional composite degradation develops

in the predicted fatigue response beyond one-hundred cycles is self-evident in the

plots of the normalized modulus versus cycles and the S-N diagrams as illustrated

later. Hence, the strong correlation between the predicted and experimental stress-

strain hysteresis loops indicates that the assumed extent, not the rate, of interface

degradation is probably representative of the physical system. Alternatively, if one

disregards the assumed form of shear degradation, e.g. Eq. (4.1), the labels (N = 1,

5, etc) represent one means of estimating the rate of interface degradation.

Note that in Fig. 4.9, the present analysis captures the modulus and ratch-

etting behavior well; however, there is some error associated with the shape of the

hysteresis loops during initial cycling. These results may be improved if the form of

the degradation in interface shear is assumed other than Eq. (4.1). Also note that

due to the present shear-lag assimptions, the predicted hysteresis loops will always

be closed, whereas experimentally these may not be observed during initial cycling

(Fig. 4.9).

Figure 4.10 illustrates several predicted and experimental hysteresis loops for

a SiC/CAS-II composite system. The experimental data are from reference 76 in

which estimates for rio and ri.. (15 and 3.5 MPa, respectively) are also provided.

However, the actual variation of T(N) during cycling is not determined [76], and

therefore, T(N) is again calculated using Eq. (4.1) with A=2.25 and w=0.00275.

Again, the present analytical results are in good agreement with their experimental

counterparts.
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Figure 4.9 Predicted and experimental stress-strain hysteresis of a SiC/CAS lami-
nate. For the experimental data, N=I, 5, 9, 109, 30040. The predicted
results are generated with 7i,= 2 0 MPa and rimin=5 MPa.
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Figure 4.10 Predicted and experimental stress-strain hysteresis for a SiC/CAS-JI
laminate. N is shown in thousands of cycles for the experimental data.
The predicted results are generated with 7io=15 MPa and Tjimi=3.5
MPa. For clarity, the predicted response at N=50 is not shown.
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Consider the variations in the hysteresis loops as -ri varies. From Eq. (3.123),

as ri vanishes, the shape of the hysteresis loops change from non-linear symmetric

loops to more "cusped" or "S-shaped" curves. Furthermore, as the interface debonds

[Eq. (3.124)], the loops form bi-linear or skewed parallelpipeds, and finally degenerate

to zero width (linear line) as Ti vanishes. These various shapes are also observed

during experimental testing [100, 144]. Under the current approach, therefore, Ti

may be estimated by finding the best fit to empirical data. Based upon the results

shown in Fig. 4.11, rimin = 1.5 MPa. These results were obtained for q, 0.3

[Eq. (4.4)]. Similar results are shown for SiC/CAS-II in Fig. 4.12.
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Figure 4.11 Predicted and experimental stress-strain hysteresis for a SiC/CAS sys-
tem. N=30,040; ri,=20 MPa and (a) Tjmin=5.0 MPa and 0,=0.0, (b)
rimin=1.5 MPa and 0,=0.3. Note that the latter curve has been shifted
along the abscissa by 0.003 for clarity.
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Figure 4.12 Stress-strain hysteresis (SiC/CAS-II). N=3.2E6; rTo=15 MPa and (a)
Tjmin=3.5 MPa and €,=0.0, (b) Timin=1.5 MPa and 0,=0.3. Note that
the latter curve has been shifted along the abscissa by 0.002 for clarity.
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Several predictions for a SiC/CAS laminate are provided in Figs. 4.13 and 4.14.

In both cases, the results obtained under the current analysis are in good agreement

with the experimental data. The experimental data in Fig. 4.13 are from refer-

150 -A A

N=1 ,000

S100

N=100,000

50

A experimental results

present analysis

0.0000 0.0005 0.0010 0.0015 0.0020

Strain (m/m)

Figure 4.13 Stress-strain hysteresis at N=1,000 and 100,000 for a unidirectional
SiC/CAS composite.

ence 153 and represent the laminate response at 1,000 and 100,000 cycles. The

predicted results are for ri = 10.5 and 5.0 MPa. In Fig. 4.14, the experimental data

are from Opalski & Mall and Pryce & Smith [144,153]. The data from Opalski and

Mall were obtained with =max 200 MPa and R=0.1 whereas the data from Pryce

and Smith were generated with am, = 200 MPa and 7=0.0. The results shown in

Fig. 4.14 are for N=10,000. Also, two stress-strain hysteresis loops from the current

analysis are shown. These correspond to 7-i = 10 and 5.5 MPa. The differences in the

empirical data (Pryce & Smith and Opalski & Mall) may be attributed to the dif-

ference in the laminate properties between various batches of materials. In addition,

whenever the composite is cycled at a peak stress near the critical composite stress
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Figure 4.14 Stress-strain hysteresis of a SiC/CAS unidirectional laminate. The
empirical data are from Opalski and Mall [144] (dashed line); and Pryce
and Smith [157] (dotted line). N=10,000. The predicted response (solid
line) is shown for ri = 10 and 5.5 MPa.

(i.e. O'max '_ o'cr), a large variation in the material response will exist due to the

inherent differences and stochastic nature in the flaw distribution between different

laminates. This is true even for laminates made from the same batch of constituents.

As shown in Fig. 2.2, the matrix begins to break-up extremely rapidly at stresses

near o.cr. Hence, given two similar laminates; one a little stronger than the other, it

is feasible that under loading to r one of the laminates may experience relatively

substantial failure of the matrix whereas little damage may occur in the other. The

exact reason for the discrepancy in the data in Fig. 4.14 is unknown.

4.3.3 Modulus Degradation. Predicted and experimental variations in the

modulus (in the longitudinal direction) resulting from the fatigue loading of SiC/1723

are shown in Fig. 4.15 for a maximum applied stress, O'ma,, equal to 360 and 500

MPa. The predicted results are generated with rimn =0.4 MPa which is determined

4-18



by fitting empirical S-N data for the same composite system. For r 360 MPa,

no degradation in the modulus is predicted under the current investigation since this

stress magnitude (360 MPa) is less than the critical composite stress, cr, of 400

MPa. Recall that for a < ar,., the laminate is assumed to be void of any damage.

Overall, the agreement between the predicted degradation in the composite modulus

in Fig. 4.15 and the empirical data is reasonable; however, the rapid decay in interface

shear from Eq. (4.1) is again apparent as discussed previously. The modulus data in

Fig. 4.15 are normalized by the initial modulus before cycling

(N = 1).t

1.00 A A A • •

A

0.95 •A
A

S0.90 A

A
0.85 A A

S0.80
A experimental values (500 MPa)

0
Z 0.75 U experimental values (360 MPa)

0.7 present analysis (500 MPa)
0.70 -- - present analysis (360 MPa)

0 .6 5 , . . ... .. , I . ... .. , . . .. . I .. ..... I
10 10 102 0 04  l106

Cycles

Figure 4.15 Normalized modulus versus fatigue cycles for a unidirectional SiC/1723
laminate.

4.3.4 S-N Behavior. Figure 4.16 illustrates the S-N prediction for SiC/CAS

composites based on the degradation in interface shear, ri(N) as expressed by Eq. (4.1)

tNote that along the abscissa in Fig. 4.15, the variable plotted is actually "cycles +1" since the
first data point illustrated in this figure is the undamaged (normalized) laminate stiffness.
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with Tim. = 5.0 MPa. The predicted fatigue life is in a reasonable agreement with

A experimental values [54]

450 experimental values [86]---& &A- --- Evans et al. analysis [54]

---- present analysis: 5 MPa400 -- ----present analysis: 4 MPa

A present analysis: 1 MPa
350 -- 0-

300

0-250 []

200
I I I l I t l ll 1 I 1 I I ~ i I I I li t I t l l I I II ~ l

10°  10, 101 101 104  101 106

Cycles to Failure

Figure 4.16 Fatigue life (S-N) diagram of a unidirectional, SiC/CAS laminate.

the experimental data of Evans et al [54]; however, it is likely that 5 MPa represents

an upper bound for T'im.in since this estimate is based upon data "confined to the

parabolic range" of stress-strain hysteresis loops [54]. Evans et al observed changes

in the shape of the experimental hysteresis loops from parabolic to linear during cy-

cling, and this is not accounted for in their analysis of ri(N). This observed change in

hysteresis could possibly result from a further decrease in ri(N). In support of this,

if -in,, is chosen as 4.0 MPa, the empirical threshold stress of 325 MPa is obtained

with the present analysis.

Karandikar [86] has also reported experimental fatigue life data for a SiC/CAS

laminate under cyclic fatigue at room temperature, and these are shown in Fig. 4.16.

If i(N) is assumed to vary again as given by Eq. (4.1), however taking a minimum

interface shear of rimn = 1.0 MPa but keeping A and w the same (i.e. A=2.25 and

w=0.00275), then the present analysis predicts a fatigue life which is in a reasonable
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agreement with Karandikar's experimental data. When comparing the analytical and

experimental S-N curves in Fig. 4.16, the reader should keep in mind the uncertainties

in estimating Ti(N), as well as the inherent scatter in the fatigue data especially in

CMCs from different batches. In spite of these difficulties, however, the present

analysis shows a promise to model fatigue responses of CMCs. Several estimates for

Timin are provided in Table 4.2 for a fatigued SiC/CAS system. The results in this

table are based upon several micromechanics models [27,54,153].

Table 4.2 Minimum interface shear for a fatigued unidirectional SiC/CAS laminate.
Estimates for rimin are in units of MPa.

Evans et al Cho et al 2 Current 3  Pryce and Smith4

5.0 5.0 - 3.5 4.0 2

1. Empirical fit of hysteresis data "confined to the parabolic range" [54].

2. Based upon temperature and modulus data (partial frictional slip model) [27].

3. Best fit to empirical threshold stress.

4. Best agreement with experimental hysteresis loops [153].

The fact that the predicted cycles to failure for a > O'th all occur at N < 100

is a result of the assumed rapid decay in the interface shear as given by Eq. (4.1).

(i(N)=Tio+(1-exp-oN))(7ii_-r,,) (4.1)

Assuming a more gradual reduction in shear should provide a closer match to the

empirical data. In addition, Eq. (4.1) does not explicitly depend on the maximum

applied stress, Oma,, nor the extent of composite damage. The reduction of interface

shear should depend on Umax, as well as the microstructural damage; however, by

assuming the parameters A and w constant in Eq. (4.1), these effects have been

neglected. Hence, in Fig. 4.16, the same rate of degradation in ri(N) is assumed for

all values of peak stress (omax). The validity of this assumption is questionable since
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the rate of decay in r (N) (i.e. wear of the interface) is expected to increase with

Umax due to more severe deformations and microstructural damages. In general, this

reduction would depend on the applied stress, o,, the residual thermal stresses, as

well as the number of fatigue cycles, N. Alternately, a better estimate of -i(N) can

be obtained from the empirical data.

Figure 4.17 compares the predicted fatigue life from the present analysis with

the experimental counterpart for another CMC system, SiC/1723 [209]. Since no

data on the specific variation of -ri(N) is available for SiC/1723, the degradation in

shear is determined from Eq. (4.1) with A = 2.25 and w = 0.00275 but with different

values of rmi. As shown in Fig. 4.17, a minimum interface shear of 0.4 MPa is found

to provide the best fit to the empirical threshold stress of 440 MPa.

600

500 A
A

400

, 300
A experimental values [209]

2 present analysis200

100 101 10 10 10 10 106

Cycles to Failure

Figure 4.17 Fatigue life (S-N) diagram of a unidirectional, SiC/1723 laminate.
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V. Cross-Ply Behavior

This chapter presents the predicted results for several cross-ply ceramic ma-

trix composites under quasi-static, repeated and fatigue loadings. The present for-

mulation considers a general damage state consisting of matrix cracking in both the

transverse and longitudinal plies, as well as interface slip and debonding, fiber failure

and fiber pull-out. The predicted results are compared with experimental data and

are found to agree well with the data. The stress-strain response under monotonic

tensile loading; hysteresis under repeated and cyclic loading and the S-N behavior

are all investigated.

The state of stress in the cross-ply laminate is modeled using five components:

the axial fiber stress in the 0' ply, af(x); the transverse ply stress, aT(X); the ax-

ial matrix stress in the 0' ply, um(x); the interlaminar shear stress, 7-(x), and the

fiber/matrix interface shear stress in the 00 ply, ri(x). Under the current formulation,

these stresses are given by the following equations as derived in chapter three.

aff(X) = c3 sinh(/Jx) + C4 cosh(Ox) + T {c 1 sinh(Ax) + c 2 cosh(Ax)} /aO + o-

(3.80)

O7T(X) = cl sinh(Ax) + c2 cosh(Ax) + aO (3.78)

v-1 1 {+ - dT(X ) - vfW (3.83)

-(x) bdaL(x) - ddUT(x) (3.51)
dx dx
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Ti(X) rf d f(x) (3.10)
2 dx

The constants in Eqs. (3.80) and (3.78) are dependent on the composite's state of

damage, and once this is determined the composite strain may be calculated from

Eq. (3.6). For the present cross-ply analysis, the behavior of several SiC/CAS and

SiC/1723 laminates is investigated. The material property data for these systems

are provided in Table 4.1. The cross-ply response under quasi-static, repeated and

cyclic loading conditions is now investigated.

5.1 Quasi-Static Loading

Stress-strain responses for several cross-ply laminates, as predicted from the

present analysis, are compared with their experimental counterparts [103] in Figs. 5.1

and 5.2. Figure 5.1 provides the results for two cross-ply lay-ups, [03/903/03] and

400 unidirectional

350 A [0 /90/03]

300
250 [03/903/0]

Z,- 200
ci'

t 150
A experimental data [103]
1 experimental data [103]

50 experimental data [103]
present analysis

0. 0 0.002 0.004 0.006 0.008 0.010
Strain (m/m)

Figure 5.1 Stress-strain predictions from the current analysis along with experi-
mental values [103]. Laminates shown are 0', [03/90/03] and [03/903/03].
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Figure 5.2 Predicted and experimental stress-strain response of a SiC/CAS lami-
nate. The modeled ply lay-up is [0/90/0/90/0/90/0/90/0].

[03/90/03], along with the unidirectional laminate. The response for the

[0/90/0/90/0/90/0/90/0] laminate is shown separately for clarity in Fig. 5.2. The

material properties for the SiC/CAS composite are provided in Table 4.1. Other

required data are given in Table 5.1. Also note that the [0/90/0/90/0/90/0/90/0]

laminate is assumed to be of the symmetric form [02.5/902], for the analysis. The

results in Figs. 5.1 and 5.2 are obtained by choosing o- 90 and ci from experimen-

Table 5.1 Assumed laminate properties

______9(mm) I d(mm) I (MPa) I4o (MPa) Irh

CAS [0/90]2s 0.79 0.7 30 130 10.
CAS [03/90/03] 0.517 0.0862 30 130 5.0
CAS [03/903/03] 0.525 0.262 30 100 4.5
CAS [0/90/0/90/0/90/0/90/0] 0.9107 0.7281 30 110 5.0

1723 [(0/90)3]s 01752 0.7 30 190 5.0
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tal data in reference 103. For each laminate, the predicted stress-strain response

is in good agreement with its experimental counterpart. Further, assuming the

[0/90/0/90/0/90/0/90/0] laminate of the form [(0m/90,)]s still provides a reason-

able prediction. The initiation of the transverse cracking occurs at 0.0165% strain

while matrix cracking initiates at 0.27% strain. The laminate fails at 0.63% strain.

Several more stress-strain predictions for SiC/CAS cross-ply laminates are

shown in Figs. 5.3 and 5.4. The points labeled 'a' through 'f' in Fig. 5.3 indicate

400 -C

A unidirectional

b

300 [0/9012,

20 - f

C2o

0 A experimental values
100 experimental values

V experimental values
d present analysis

Y0 0.005 0.010 0.015

Strain (m/rn)

Figure 5.3 Stress-strain predictions of a [(0/90)]2,, SiC/CAS laminate. The unidi-
rectional response is also shown.

changes in the microstructural failure modes. Point 'a' corresponds to the unidirec-

tional proportional limit and indicates the accumulation of sufficient matrix cracks

to cause the stress-strain response to deviate from linearity. Point 'b' corresponds to

crack saturation and the initiation of fiber failure; whereas, 'c' represents the point

where the interface becomes completely debonded (i.e. d = L/2). The proportional

limits for the cross-ply laminate (points d' and 'e') correspond to the accumulation
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of transverse cracks in the 900 ply and the matrix cracks in the 0' ply, respectively.

The influence of fiber fracture within the 0' ply of the cross-ply laminate becomes ap-

parent at point 'f'. In Fig. 5.3, the material property data are taken from Table 4.1;

however, in Fig. 5.4, ri = 14.4 MPa and am = 5.OE-6 /0 C in accordance with ref-

erence 147. Additionally, the thickness of the 00 ply for the [03/902/03] laminate is

assumed to be the average of the other two ([03/90/03] and [03/903/03]) [197]. Two

400

350

3X [3/90/031

X

300 ×

+ 1 03/90YD3]

C 200
0+ X

x150 experimental values
+ experimental values

100- "* experimental values
- present analysis

50O

0 0.002 0.004 0.006 0.008 0.01
Strain (rn/rn)

Figure 5.4 Stress-strain predictions for several cross-ply laminates. Experimental
data are from reference 197. Three laminate configurations are shown:
[03/90/03] (x), [03/902/03] (+) and [03/903/03] (*). Note that some
experimental data for the [03/902/03] laminate are extrapolated.

sets of experimental data are provided in Fig. 5.3. These data are from Opalski and

Gudiatis and were obtained from load and strain control tests, respectively [62,143].

The material behavior of a SiC/1723 cross-ply laminate is also predicted. Ex-

perimentally, the laminate lay-up is of the form [(0/90)3],; however, numerically,

the laminate is modeled as having the stacking sequence [(0/90)]3,. The latter is

required due to the assumed symmetry of the model. Again, there are no problems
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in modeling the laminate in this manner as indicated by Fig. 5.5. The maximum

stress obtained for the cross-ply laminate is 300 MPa. Figure 5.5 also shows the

unidirectional prediction. In this case, the maximum stress is 700 MPa.

700
6 unidirectional

600

500

E 400

~ 300 (0/90)3],

200

100 A experimental values
present analysis

O ~ig i .. .i . . . i ...i . . .. I. . ... t. . . .. i

0.0000 0.0010 0.0020 0.0030 0.0040 0.0050 0.0060 0.0070 0.0080

Strain (m/m)

Figure 5.5 Stress-strain response of a unidirectional and [(0/90)31,, SiC/1723

laminate.

5.1.1 Critical Strain Energies. The critical strain energy for the 900 ply,

UcrT, and the critical strain energy for the matrix in the 0' ply, Ucrm, may be esti-

mated by evaluating the energies associated with the appropriate proportional limits

obtained from the cross-ply stress-strain curve (acr° , a°).t In addition, the critical

energies may also be estimated from the proportional limits of 90' and 0' laminates

(acr9 0 , ccro) [173]. The latter is desired since the stress-strain response for different

cross-ply lay-ups may be predicted on the availability of cr 9o and 0 cr0

tReference Fig. 2.6 on page 2-16.
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However, to obtain estimates for the cross-ply properties, a 90 and , from

qITI0 and cr0 requires accounting for the effect of transverse cracks on matrix crack-

ing within the 0' ply. If UCTm were to be determined from ac,,, then the actual

proportional limit (cr° ) for the cross-ply laminate will be overestimated since the

influence of the transverse cracks on matrix cracking has not been accounted for in

the analysis. Hence, the critical matrix and fiber strain energies (Ucm, UII f) must be

adjusted to account for the presence of transverse cracks in the 900 ply. A procedure

for estimating these parameters is now provided.

Experiments have shown that the stress level associated with the onset of

matrix cracking in the 00 ply of a cross-ply laminate is less than the stress level at

which the cracking initiates in a 0' laminate [85,86]. This behavior is expected due

to the presence of the transverse cracks. Experimental data indicate that transverse

cracks extend "a few fiber diameters" into the 0' ply and are therefore significant

local stress risers [197]. Based upon empirical crack density data [85,86], the effect of

transverse cracking on the initiation of matrix cracking may be estimated by simply

shifting the crack density Versus 0' ply stress curve (Fig. 5.1.1). The 00 ply stress is

used since it is the local stress (and stress concentrations) in the 0' ply which control

the crack progression in this ply rather than the applied laminate stress. The present

analysis may be used to estimate the stress in the 00 ply.

Using the empirical data in references 85 and 86, the shift (i.e. the ratio

orO/aco) is found to be equal to 0.7 for the three SiC/CAS laminates investi-

gated in this study. These three laminates have lay-ups; [03/903/03], [03/90/03]

and [0/90/0/90/0/90/0/90/0]. Since the shift is constant for all three laminates,

the strain energies U, and Ucrf are estimated using an adjusted critical stress of

a',. = 0.7o for all cases. The fact that this ratio is constant for all three cases

seems to indicate that U,,. is a function of the orientation of the plies within the

laminate only and not the number of plies or stacking sequence.
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cross-ply
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in 0° ply
Figure 5.6 Schematic representation of crack density versus 0' ply stress for a uni-

directional and cross-ply laminate.

The predicted results for the [03/903/03], [03/90/03] and [0/90/0/90/0/90/0/90/0]

SiC/CAS laminates are shown in Figs. 5.7 and 5.8. The stress-strain curves are gen-

erated from the current analysis with co = 0.7u,,,0 Again the results are in good

agreement with the empirical data. This agreement is noteworthy since different

cross-ply laminates' stress-strain responses are predicted from only lamina proper-

ties, i.e. the 900 ply and the 00 ply.
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Figure 5.7 Stress-strain predictions from the current analysis along with exper-
imental values [103]. Laminates shown are (a) 00, [03/90/03] and
[03/903/03] based upon or,,,, and acro.
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Figure 5.8 Predicted and experimental stress-strain response of a SiC/CAS
laminate based upon aoo and ocr .  The modeled ply lay-up is
[0/90/0/90/0/90/0/90/0].
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5.2 Repeated Loading

Stress-strain curves for a [0/9012s, SiC/CAS laminate under loading and un-

loading conditions are shown in Fig. 5.9. The experimental data are from refer-

ence 143. The predicted response shown in Fig. 5.9 (a) is for the case when the

cross-ply laminate is unloaded just after the onset of matrix cracking in the 00 ply.

In Fig. 5.9 (b), the composite is unloaded after additional damage in the 0' ply has

developed. In particular, the predicted response in Fig. 5.9 (a) is generated with a

peak load of 140 MPa whereas loading in Fig. 5.9 (b) is allowed to continue up to a

maximum applied stress of 180 MPa [143]. These results are obtained from the lam-

ina properties, i.e. cCro and a,9O. Figure 5.9 clearly demonstrates that the present

analysis is capable of modeling the behavior of a cross-ply ceramic composite under

repeated loading. For both cases, the predicted loading and unloading response is

in good agreement with experimental data. Note that no attempt has been made

to account for variations in material/lamina properties which may develop between

various batches of materials.
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Figure 5.9 Stress-strain response of a [(0/90)]2,, SiC/CAS laminate as predicted
by the present analysis: (a) '7ma= 140 MPa, (b) crmar= 180 MPa.
IZ=0.111.
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Figure 5.10 illustrates the response of the same cross-ply laminate under re-

peated loading. The experimental data are from reference 4 and represent the cross-

ply's behavior under three loading and unloading cycles. Initially, the composite is

loaded to a maximum stress of 140 MPa and then unloaded to zero load. The same

specimen is then reloaded to 175 MPa and again unloaded. Finally, the specimen

is reloaded to a peak stress of 200 MPa after which the load is again removed. For

clarity, the reloading portion of the stress-strain response is not presented. Again

the predicted results match well with the empirical data. However, since the present

analysis assumes that the interface shear stress remains constant during loading and

unloading, the theory is not valid after several repeated loadings, especially under

fatigue type of loading involving a large number of cycles. If a fatigue loading envi-

ronment is to be considered, the degradation of the interface due to frictional wear,

as well as the evolution of additional matrix cracks, fiber fractures and fiber pull-out

must be considered as discussed in the next section.

Finally, the present analysis provides the cross-ply laminate's response when

the fiber/matrix interface is partially bonded. However, once the interface completely

debonds, the predicted residual or permanent strain (at o=0) remains constant. This

phenomenon results from the simplified shear-lag theory and is illustrated in Fig. 5.11

which considers three loading cycles for a cross-ply, [03/903/03], SiC/CAS laminate.

The first hysteresis loop (oma, = 150 MPa) occurs while the interface is still bonded.

However, during the last two loading cycles, the maximum applied stress ( =max 200

and 250 MPa) is large enough to cause the interface to debond completely. The fact

that the residual strain does not vary between the latter two hysteresis loops can be

attributed to not modeling the fatigue specific damages such as the degradation of

the fiber/matrix interface and fiber pull-out. These are, however, considered in the

next section.
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Figure 5.10 Repeated loading response of a [(0/90)]2,, SiC/CAS laminate. Empiri-

cal data are from reference 4. For clarity, only the unloading portion of

the response is illustrated. The reloading portion of the loading cycle

is not shown.

5.3 Cyclic Loading

Under cyclic loading, additional damages can develop after the first loading

cycle since the frictional resistance along the interface is allowed to decrease during

each subsequent cycle. The latter is thought to result from wear of constituents due

to the continuous frictional sliding along the interface. Moreover, as the interface

wears, the ability of the fibers to transfer stress into the matrix and to reduce crack-

tip stress intensities by providing closing tractions across the crack plane is reduced.

This allows the formation of the additional (fatigue specific) damages which, in turn,

produce the variations in the observed stress-strain response [172].

For the current investigation of cross-ply laminates, the degradation in the in-

terface shear stress, ri(N), is again assumed to be given by Eq. (4.1) with A=2.25 and

w=0.00275. Recall that this relation was proposed by Evans et al based upon their
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Figure 5.11 Repeated loading response of a [03/903/03], SiC/CAS laminate.

investigation of unidirectional laminates [54]. The fact that Eq. (4.1) is now used

for the investigation of different cross-ply laminates is one of not only convenience,

but also necessity since alternate solutions are not available at this time. However,

the degradation in shear can be determined by fitting the predicted results from

the present study to empirical data, but this is not the current focus. Also, note

that Eq. (4.1) is used for composite systems other than those originally proposed by

Evans et al, e.g. SiC/1723.

The predicted results for cyclic loading are presented in three sections. The

first section investigates the stress-strain hysteresis and strain ratchetting behavior

of the cross-ply laminates. The final sections examine the modulus degradation and

S-N behavior, respectively. As was observed with the unidirectional predictions, the

assumed form of Eq. (4.1) causes the predicted results to differ from the experimental

data; however, the two are still in relatively good agreement.
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5.3.1 Stress-Strain Hysteresis and Strain Ratchetting. Stress-strain hys-

teresis and strain ratchetting are assumed to develop due to microstructural dam-

ages, e.g. fiber pull-out. These are accounted for by adjusting the fiber stress by

a constant amount Aot(N) where Aa(N) is assumed to be the additional stress in

an undamaged fiber when adjacent fibers fracture and pull-out (appendix H). As

with the unidirectional analysis, the stress Ao(N) may be determined analytically

by considering a permanently bonded region (PBR) along the fiber/matrix interface

of the 0' ply. The PBR is assumed not to debond during loading nor slip during

unloading. As expected, the maximum applied stress, amax, the interface resistance,

r<(N), and the composite's state of damage, D, L and d, all effect the laminate's

strain ratchetting behavior as illustrated in Eq. (5.1).

Av((N)= b-+-d 1 {amax - O'min} - { frax - fn0n} - 2Ti(N) L
b vf(-D) rf

d 1 1 r 1
cos (~t2)+ - cosh xb cosh (ALt/2) "vj(1- D) Lco° h(Ats 2 ( xt)=_

11 Ef o
+1cosh A\t) cosh A\xt.=. 0~ra 51

The reader may verify that in the absence of the 90' plies, Eq. (5.1) reduces to the

unidirectional case [Eq. (4.3)].

Figures 5.12 and 5.13 show several predicted hysteresis loops along with their

corresponding experimental data. The results shown in Fig. 5.12 are for 0ma=160

MPa and 7=0.125. In Fig. 5.13, amax=180 MPa and 7=0.11. These are consistent

with the test conditions from Opalski [143]. Both sets of predicted data are generated

using Eq. (4.1) with ri,=20 MPa and Trmii=1 MPa. In both cases, the predicted

results match well with the experimental data. Variations in both the size and

shape of the hysteresis loops, as well as the strain ratchetting behavior are reasonably

captured. The differences fall well within the expected range of empirical scatter. No

further results of this type are provided due to the limited availability of experimental

data.
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Figure 5.12 Stress-strain hysteresis for a [0/90]2=, SiC/CAS ceramic composite. Ex-
perimental data are from Opaiski [143]. Omar 160 MPa, 7Z=0.125.
For the experimental data, N - 1, 10, 100, 10000.
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Figure 5.13 Stress-strain hysteresis for a [0/9012,, SiC/CAS ceramic composite. Ex-
perimental data are from Opalski [143]. ,ma, = 180 MPa, 7R=0.11. For
the experimental data, N = 1, 10, 100, 1000.
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5.3.2 Modulus Degradation. Several curves illustrating the degradation in

the elastic modulus as a function of fatigue cycles are shown in Figs. 5.14 through 5 .1 6 .t

The results shown in the first figure are for omax = 160 and 180 MPa, and corre-

spond with the same loading conditions as in Figs. 5.12 and 5.13, respectively. Here,

1.t

A experimental values: 160 MPa

* experimental values: 180 MPa
0.8 -N present analysis: 160 MPa

A - O--- present analysis: 180 MPa

0.6 -

Z 0.4-

0. 10 102 10 4Cycles

Figure 5.14 Laminate modulus versus fatigue cycles for a [0/90]2S, SiC/CAS ce-
ramic composite. Experimental data are from Opalski [143].

the elastic modulus is normalized with its initial value before cycling. In each case,

the modulus substantially decreases during the first cycle due to the formation of

microstructural damages, and further decreases in the modulus are dependent on

the degradation of the shear, T-(N). In Fig. 5.14, the predicted modulus decreases

to 56% of its initial value after the first cycle. As the interface wears with further

cycling, the predicted modulus decreases to 40% of the undamaged magnitude. For

a = 180 MPa, the modulus initially decreases by 46% and continues to decline un-

tNote that the abscissa in these figures actually plots the number of loading cycles plus one,
i.e. cycles +1, since the first data point illustrated in each figure represents the undamaged (nor-
malized) laminate stiffness.
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til reaching 37.5% of its original value. For each case, the minimum interface shear

Timin is assumed to be I MPa. Moreover, the assumed rapid degradation in the shear,

as predicted by Eq. (4.1), is self evident. Better correlation between the predicted

results and experimental data could be obtained through appropriate selection of

-ri(N).

Similar results for a [03/90/03] and [03/903/03], SiC/CAS laminate are shown

in Figs. 5.15 and 5.16. Again the predicted results are consistent with the published

data; however, the assumed degradation in shear causes the predicted modulus to

decline rapidly over the first one-hundred cycles. In all cases, the predicted results

provide a conservative design estimate for the laminate behavior. For example, the

initial decrease to 0.728 of the original modulus, Elo, for the [03/903/03] laminate

(Fig. 5.16) matches well with the published data [103]; however, the current analysis

predicted the final degradation in the elastic modulus to 0.54 El. whereas the exper-

imental data show a decrease to only 0.61 Elo. The difference is due, in large part,

to the assumption that the interface shear degrades to 1 MPa. If the shear stress

is reduced to 2 or 3 MPa, a closer match between the predicted and experimental

results would likely develop.
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Figure 5.15 Laminate modulus versus fatigue cycles for a [03/90/03], SiC/CAS ce-
ramic composite. Experimental data are from Kuo [103]. max =

150 & 130 MPa.
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Figure 5.16 Laminate modulus versus fatigue cycles for a [03/903/03], SiC/CAS
(Ormax = 115 MPa) and a [(0/90)3],, SiC/1723 (mar, = 210 MPa)
ceramic composite. Experimental data are from Kuo [103] and Zawada
et al [209].
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Finally, the degradation in the laminate modulus for a [(0/90)3],, SiC/1723

ceramic composite is also shown in Fig. 5.16. The experimental data are from Zawada

et al [209] and are shown for =max 210 MPa. The elastic modulus decreases to

72.8% of the original stiffness during the first cycle. This decrease is due primarily

to matrix cracking and interface debonding. Limited fiber failure is observed. In

total, the modulus is predicted to decrease by 46% due to the damage formation

and the degradation of the interface to 1 MPa. These are again consistent with the

experimental data.

5.3.3 S-N Behavior. Figures 5.17 through 5.19 represent the predicted S-N

behavior of the SiC/CAS laminates investigated by Kuo [103]. As shown in these

figures, a minimum shear stress, Timtj, of 1 MPa matches well with the empirical

data. Furthermore, Timin 1 MPa yields a conservative estimate for the fatigue

limit. Similar results for the [(0/90)3], SiC/1723 laminate are shown in Fig. 5.20.

As with the unidirectional results, the assumed rapid degradation in the interface

shear, ri(N), is apparent in these figures. Furthermore, as expected the more the

interface is allowed to wear, the farther the fatigue limit drops. This results since

as the interface wears, i.e. rimin decreases, fractured fibers slip/pull-out more easily

from the matrix, and as the fibers slip, the likelihood of laminate failure increases.

As illustrated in Figs. 5.17 through 5.20, the interface shear stress is predicted

to decrease to a minimum (steady-state) value somewhere between 1 and 5 MPa.

In each of the referenced figures, this range for -imin provides a good bounding

envelop for the experimental data. As expected, the life expectancy of the laminate

decreases as the interface shear drops from 5 to 1 MPa. The drop in the fatigue

limit accompanying the decline in the shear stress is a bi-product of the additional

decrease in ri(N) and its effect on the quantity 2ri(N)L/rf as it appears in Eq. (5.1).

In addition, the decrease in ri(N) also permits the formation of additional damages

due to less efficient load transfer between the constituents. In particular as ri(N)
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Figure 5.17 Peak stress versus cycles to failure for a [03/90/03], SiC/CAS ceramic
composite. Experimental data are from Kuo [103].

drops, the average stress in the fiber increases and correspondingly the probability

of fiber fracture also increases.

The ability to predict the S-N behavior of CMC laminates, as illustrated in

Figs. 5.17 through 5.20, is a significant accomplishment since under previous mi-

cromechanics analyses this could not be done with any degree of accuracy. The

present formulation incorporates a number of microstructural mechanisms, e.g. ma-

trix cracking, interface debonding, fiber fracture, frictional slip, fiber pull-out, strain

ratchetting, stress-strain hysteresis, interface wear, etc, into a consistent, compre-

hensive and yet simple methodology which, as demonstrated by the results, does a

good job in modeling the laminate behavior. It would be expected that if a more ac-

curate representation for the degradation in interface shear, ri(N), could be obtained

then the predicted results would likely improve. The alternative is to use the present

analysis to determine ri(N) by fitting the empirical data. Each of the salient fatigue
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Figure 5.18 Peak stress versus cycles to failure for a [03/903/03], SiC/CAS ceramic
composite. Experimental data are from Kuo [103].

features (e.g. stress-strain hysteresis, strain ratchetting, modulus degradation and

S-N behavior) could be selectively fit.
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Figure 5.19 Peak stress versus cycles to failure for a [0/90/0/90/0/90/0/90/0],
SiC/CAS ceramic composite. Experimental data are from Kuo [103].
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Figure 5.20 Peak stress versus cycles to failure for a [(0/90)3],, SiC/1723 ceramic
composite. Experimental data are from Zawada et al [209].
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VI. Conclusions

Ceramic matrix composites exhibit a remarkable increase in strain-to-failure

as compared with their monolithic counterparts. As such, this relatively new breed

of composite is emerging as a viable material and structural candidate for a virtual

plethora of industries. In particular, these advanced composites are ideally suited

for aerospace and other high-temperature applications in which the thermal and

wear properties of the ceramic matrix are of great benefit. The incorporation of

the reinforcement phase into the brittle matrix almost serendipitously leads to mi-

crostructural mechanisms which reduce the propensity for catastrophic failure of the

laminate. In practice, the ability of the reinforcing fibers to arrest the growth of

dominant fractures via energy dissipation and the application of closing tractions to

crack fronts has most notably increased the feasibility of employing these materials

in environments dominated by severe thermal and mechanical fatigue loadings.

Under such conditions, however, extensive microstructural damages may de-

velop due to the limited fracture toughness of the constituent materials. This,

combined with the inherent complexities and stochastic nature of failure in brittle

non-homogeneous media, makes the modeling of ceramic matrix composites quite

difficult. However, it is worth noting that it is the formation of these damages which

provided the ceramic composite with its large strain-to-failure, pseudo-ductility, and

gradual non-catastrophic failure mode, and therefore, the formation of these dam-

ages is to be encouraged. Nonetheless, the ability to predict the evolution of the

microstructural damages, as well as the resulting material response remains a worth-

while, albeit formidable, task since it is the only means of characterizing the com-

posite's residual (strength and stiffness) properties.

Towards this end, the research accomplished under the current doctoral study

includes the successful development and implementation of an analysis methodology

for predicting the behavior of ceramic matrix composites under operating conditions
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which produce the continuous progression of microstructural damages. In particular,

the behavior of both unidirectional and cross-ply laminates under room-temperature

quasi-static, repeated and cyclic loading conditions is investigated: Note that the

present research represents a synthesis of existing theories, as originally proposed

or appropriately modified for the current analysis, and new material generated by

the author. For example, the formulation of the model used in the analysis of

unidirectional laminates is rooted in shear-lag theory (section 3.1) but is modified

by the author to consider damages other than matrix cracking as originally proposed

[25]. This represents an area where existing work is modified/extended by the author.

The model used in the analysis of cross-ply laminates, on the other hand, represents

work accomplished as part of the current research. In all situations, the works

accomplished by other researchers are appropriately referenced.

The solution technique is validated by comparing the predicted material stress-

strain response of several composite materials and laminate lay-ups with the corre-

sponding empirical data. A summary of the work done is presented in Table 6.1

which appears at the end of this chapter. This table should serve as a convenient

"road map" as many of the tasks completed under the current research are cross-

referenced according to the relevant chapters, sections, appendices and figures as

they appear in this document. The table lists accomplishments for both the uni-

directional and cross-ply studies. Furthermore, the work is categorized according

to the analysis formulation and solution validation. The analysis consists in the

development of the micromechanics models and failure criteria, whereas the solu-

tion validation high-lights areas where predicted and experimental test results are

compared. The results are broken down by loading environment (e.g. static, fa-

tigue); material (e.g. SiC/CAS, SiC/1723) and stacking sequence (e.g. [03/90/03],

[0/90/0/90/0/90/0/90]).

In short, the present formulation consists in the development of a micromechan-

ics analysis (section 3.1) and set of failure criteria (section 3.2) for modeling the initi-
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ation and evolution of various damages inherent to brittle composites. These include

matrix cracking in 00 and 900 plies (section 3.2.1), fiber/matrix interface debonding

(section 3.2.2), fiber fracture (section 3.2.3) and fiber pull-out (section 3.3.2). In

addition, frictional slip along fiber/matrix interfaces is necessary for repeated and

fatigue loadings. Therefore, formulations of the extent of frictional sliding for a par-

tially bonded and fully debonded interface is accomplished (appendix C). In previous

studies, only the fully debonded case was considered. In addition, analyses required

to capture the continuous development of permanent strain, as experienced under

fatigue loading conditions, are developed (appendices G and H).

The stress-strain and strain-displacement relations for the current analysis are

derived from a one-dimensional shear-lag formulation. For unidirectional laminates,

the work originally presented by Kuo and Chou [106], which was formulated to

model the material behavior with the two damage modes of matrix cracking and

interface debonding, is extended to consider fiber fracture, frictional slip and fiber

pull-out (section 3.1.2). These allow not only for a more accurate prediction of the

material response under quasi-static loading, as originally proposed, but also the

present analysis is well suited for modeling the stress-strain hysteresis and strain

ratchetting behavior associated with repeated and fatigue loadings. For the cross-

ply laminates, a new model is formulated which considers a generalized state of

damage in which any relative configuration between matrix cracking of 0' and 90'

plies is permitted (section 3.1.3). In the previous study, this had been limited to

only a few special configurations [106]. In both cases, unidirectional and cross-ply

laminates, the present shear-lag models prove adequate for modeling the material

response provided an equivalent state of damage can be derived. Moreover, these

models provide a convenient vehicle to relate the macromechanical behavior with

specific micromechanical mechanisms (chapters four and five). In particular, matrix

cracking, interface debonding and fiber fracture are well characterized and can be

associated with the salient features of the material response curves. The monotonic
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loading response (sections 4.1 and 5.1), stress-strain hysteresis, strain ratchetting,

modulus degradation and S-N behavior under cyclic loading (sections 4.3 and 5.3)

all compare well with experimental data.

The failure criteria developed in the current analysis are formulated to be

amenable to a variety of solution techniques. Moreover, the dependence of these

criteria on empirical data is minimized. Closed-form solutions are provided for esti-

mating the instantaneous matrix crack density (appendix E) and interface debond

length whereas the extent of fiber fracture is determined using a Weibull failure distri-

bution in which the statistical modulus is based upon empirical data (appendix F).

For consistency throughout the analysis, the failure criteria governing fiber frac-

ture, matrix cracking and transverse cracking are all based on corresponding critical

strain energies, UCrf, Ucrm and U,, (section 3.2). Moreover, for the cross-ply lami-

nates, these energies can be calculated based upon the energies of the unidirectional

laminate and the relative crack density evolution of these two laminate systems

(section 5.1.1). This permits the material response of a large number of compos-

ite systems and laminate geometries to be modeled based only on the most basic

laminate properties (appendix I).

The proposed micromechanics model and failure criteria are quite effective in

modeling the behavior of unidirectional laminates under quasi-static loadings (sec-

tion 4.1). As is illustrated in Figs. 4.1 and 4.2, the present shear-lag analysis does

a nice job of predicting the changes in the composite's (elastic) modulus due to

the initiation and progression of damages. Furthermore, the evolution of matrix

cracks and interface debonds is captured well with ihe critical matrix strain energy

(CMSE) and maximum stress criteria. As expected, however, the break-up of the

fibers produces a more dramatic decline in the composite modulus than the two dam-

age modes of matrix cracking and interface debonding. Fortunately, the proposed

Weibull distribution is sufficient for accounting for large variations in the evolutions

of fiber fractures. In theory, a range of behaviors can be modeled based solely on
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the Weibull modulus, rh. Moreover, the estimated range is consistent with previous

findings (appendix F) [37]. The final composite modulus is observed to approach a

magnitude of v1 Ef(1 - D).

The behavior of unidirectional laminates under repeated (section 4.2) and fa-

tigue loadings (section 4.3) is also well characterized. Under repeated loadings, the

modulus degradation (section 4.3.3) and the stress-strain hysteresis (section 4.3.2) is

consistent with the expected behavior - at least while the interface remains bonded.

Once the interface fully debonds, the predicted permanent (residual) strain upon

unloading fails to increase as observed experimentally. Under fatigue loadings, this

problem becomes worse since the predicted residual strain decreases as the interface

wears. The latter is a result of the simplifying assumptions associated with the mi-

cromechanics model. To correct this behavior, the constituent stresses are modified

to account for fracture and pull-out of fibers which is thought to be the catalyst

for the aforementioned phenomenon (appendix G). With the incorporation of these

damage mechanisms, both the hysteresis and strain ratchetting behavior of unidi-

rectional CMCs are successfully modeled up to several millions of cycles (Fig. 4.10).

The analysis, as presented herein, is also a viable means for estimating the interface

shear resistance and bonding strength. This is significant since there exists some

uncertainty regarding the empirical data. Finally, the predicted fatigue life and S-N

behavior for various unidirectional laminates is found to be consistent with previous

results [54]; however, as expected, the analysis shows a strong dependency on the

(assumed) interface wear.

The proposed model for the cross-ply laminate also does a good job in predict-

ing the material behavior of the CMCs (chapter five). All relevant damage modes

appear to be adequately handled. The quasi-static stress-strain analysis, however,

does require that the critical composites stresses for the 0' and 900 plies be de-

termined (section 5.1). This is accomplished within the current study by choosing

the critical stresses based upon experimental data or through approximations based
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upon properties of the unidirectional laminate (section 5.1.1). Analytical solutions

also exist (appendix I). For repeated and fatigue loading conditions, the hysteresis

and strain ratchetting mechanisms are consistent with the experimental data once

fiber fracture and pull-out are adequately modeled (section 5.3.1). The other salient

features associated with the fatigue response of cross-ply laminates, e.g. modulus

degradation and S-N behavior, are also predicted with reasonable accuracy (sec-

tions 5.3.2 and 5.3.3). However, once again it is clear that the residual properties

of the interface govern, in large part, the global composite response. This is to be

expected since it is the chemical bonding and residual thermal stresses along the

fiber/matrix interface which dictate everything from the initiation and evolution of

microstructural damages and the corresponding energy dissipating mechanisms to

the macromechanical stress-strain and hysteresis behavior, as well as the fatigue life

of the laminate itself.

And indeed, the material behavior predicted under the current analysis is found

to be strongly dependent on the assumed interface properties, e.g. the frictional resis-

tance of the interface, Ti, and the ultimate shear strength of the interface, ruu. This

dependence results in the matrix cracking and interface debonding failure modes

being highly coupled (appendix E). Moreover, the (assumed) degradation in shear

during fatigue loadings is found to significantly influence the predicted behavior of

the laminate (sections 4.3 and 5.3). In particular, the assumed rapid decline in

ri(N) as modeled with Eq. (4.1) is quite apparent in the predicted (elastic) modulus

degradation and S-N behavior for both the unidirectional and cross-ply laminates.

However, the final steady-state interface shear predicted by the current analysis is

consistent with estimates from previous studies. For example, the frictional resis-

tance along the interface of the unidirectional SiC/CAS laminate is predicted to

fall from 20 MPa to around 5 MPa during fatigue cycling. This is consistent with

the current literature [54]. Also, the present analysis estimates an interface bond

strength of about 200 MPa which is in agreement with previous work [113].
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Under the current research, the model and failure criteria are chosen to allow

for analysis of complex loading (i.e. fatigue). And, in fact, the analysis methodology

is successfully employed to consider many of the nuances associated with fatigue

loading environments. Also, since the failure criteria proposed under the current

analysis do not restrict the location where new cracks form, a more gradual pro-

gression of damages than otherwise determined with previous criteria is found. As

a result, the analysis matches the empirical trends more accurately. Finally, the

proposed approach is found to be robust to variations in the critical composite stress

and with the assumed stacking sequence of the 00/90' plies in the cross-ply lami-

nates. These make the current analysis a viable approach for modeling a variety of

CMC unidirectional and cross-ply laminates under different loading conditions.
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Table 6.1 Accomplishments of the Present Study

Unidirectional Laminate

Analysis

- Model Formulation

* Quasi-static loading
Chapter Section Appendix Figure

1,3 1.3, 2.4, 3.1.2, B.2 A, B, I 2.7, 3.1, 3.7, B.3,1.3

* Repeated loading
ChapterJ Section Appendix Figure

1 1,3 12.2.3, 3.3.2 C 2.4, C.1

* Cyclic loading
Chapter I Section Appendix Figure

1, 3 2.2.3, 3.3.3, A.6.2 C, G 2.5, G.2, G.3

* Stress-strain hysteresis
D Chapter Section Appendix Figure

1, 3 A.6.2.2, B.3 A, B, C, D 2.5, B.4

* Modulus degradation
r Chapter] Section Appendix Figure Ii
1 1, 3 A.6.2.1, B.3 A, B B.4

• Strain ratchetting
Chapter Section Appendix Figure

1, 3 1 3.3.3.1, A.6.2.3, B.3 A, B, G 2.5, 3.18, 3.19, B.4

S-N behavior
Chapter Section Appendix Figure

1, 3 3.3.3.2, A.6.2.4, B.3 A 2.5, B.4, B.5

Failure Criteria

* Matrix cracking
Chapter Section Appendix Figure

J 1, 3 3.2.1, E.1, E.3 E, I 3.13, E.6, E.8, E.11, E.14
* Interfacial debonding

I[ Chapter Section Appendix Figure

1, 3 3.2.2, F.5 F 3.14, C.2

* Fiber fracture
I[ Chapter Section Appendix Figure
I 1,3 3.2.3, F.2 F, I 4.1,4.2

6-8



* Validation

- Quasi-static loading
Chapter Section [Appendix Figure

4 4.1 E 4.2,4.3

- Repeated loading
Chapter Section Appendix Figure

4 4 4.2 C 4.6, 4.7, C.3

- Cyclic loading
Chapter Section Figure

4 4.3 4.9-4.17

* Stress-strain hysteresis
1[ Chapter Section Figure

4 4.3.2 4.6, 4.9-4.14

* Modulus degradation
Chapter Section Figure

4 4.3.3 4.7, 4.9-4.14, 4.15

* Strain ratchetting
Chapter Section Figure

4 4.3.2 4.7, 4.9-4.14

* S-N behavior
Chapter Section Figure

4 4.3.4 4.16, 4.17

- Ceramic composite systems

* SiC/CAS

SChapter Section Figure

11 4 4.1-4.3 4.1-4.11, 4.13, 4.14, 4.16

* SiC/CAS-II
Chapter Section Figure ]I

4 4.1-4.3 4.2, 4.10, 4.12

* SiC/1723
I Chapter J Section Figure II

I 4__4 4.1-4.3 4.2, 4.15, 4.17

6-9



Cross-Ply Laminate

e Analysis

Model Formulation

* Quasi-static loading
Chapter I Section Appendix Figure

1,3 [1.3, 2.4, 3.1.3 I 2.8, 3.8-3.10, 1.3

* Repeated loading
Chapter I Section Appendix Figure

1,3 1 1.3, 2.2.3, 3.1.3, C.2.2 C 2.4

* Cyclic loading
Chapter [ Section Appendix Figure

1,3 11.3, 2.2.3, 3.1.3 C, H 2.5

Stress-strain hysteresis

[[Chapter Section Appendix Figure

1, 3 A.6.2.2, B.3 A, B, C, D 2.5, B.4

Modulus degradation

Chapter Section Appendix Figure

1, 3 A.6.2.1, B.3 A, B B.4

Strain ratchetting

Chapter] Section Appendix Figure

1, 3 3.3.3.1, A.6.2.3, B.3 A, B, H 2.5, 3.18, 3.19, B.4

S-N behavior
Chapter Section Appendix Figure

T1, 3 3.3.3.2, A.6.2.4, B.3 A 2.5, B.4, B.5

Failure Criteria

* Matrix cracking
ft Chapter Section Appendix Figure

ft 1,3 3.2.1, E.1, E.3 E, I 3.13, E.6, E.8, E.11, E.141

* Interfacial debonding
ft Chapter Section Appendix [Figure

ft 1, 3 3.2.2, F.5 F 3.14, C.2

* Fiber fracture
f Chapter Section Appendix Figure

ft 1, 3 3.2.3, F.2 F, I 4.1, 4.2
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* Validation

- Quasi-static loading
([Chapter [ Section[ Figure

II 1 [ 5.1 [ 3.11, 3.12, 5.1-5.5, 5.7, 5.8

- Repeated loading
([Chapter [Section [Figure
[ 5 [ 5.2 5.9-5.11

- Cyclic loading
I[Chapter [Section Figure

5 1 5.3 1 5.12-5.22

* Stress-strain hysteresis
Chapter Section ] Figure

E 5 J 5.3.1 1 5.9, 5.11-5.13

* Modulus degradation
Chapter Section] Figure

U 5 ] 5.3.2 ]5.14-5.16
* Strain ratchetting

Chapter Section] Figure

II 5 ] 5.3.1 ]5.9, 5.11-5.13

* S-N behavior
Chapter Section] Figure

5 5 ] 5.3.3 ]5.19-5.201
- Ceramic composite systems

* SiC/CAS

[03/90/03]
[[ Chapter I Section Figure

[ 5~ 5 5.1, 5.3 [ 5.1, 5.4, 5.7, 5.15, 5.17

[03/902/03]

Chapter I Section I Figure

I 5 5 5.1 5.4
[03/903/03]

Chapter I Section Figure

El 5 5.1-5.3 ] 5.1, 5.4, 5.7, 5.11, 5.16, 5.18

[0/90/0/90/0/90/0/90/0]

E Chapter I Section I Figure
5 I 5.1, 5.3 1 5.2, 5.8, 5.19
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*[0190]2s, ____

SChapter] Section] Figure

5 ]5.1-5.3 ]5.3, 5.9, 5.10, 5.1251

*SiC/1723

*[(0/90)31., ____

~Chapter ]Section ] Figure

5 ]5.1, 5.3 ]5.3, 5.16, 5.20
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VII. Recommendations

This chapter provides several suggestions for further work in the present topic

area. The majority of recommendations are natural extensions of the current doc-

toral research.

7.1 General Recommendations

It is clear that the development of a fundamental theory which can be used

to analyze the behavior of a ceramic matrix composite of arbitrary ply orientation

and under all possible (multi-axial) loading conditions would be of great utility.

Moreover, the present research is presented as a first step in this direction; however,

there is still much to be done. Two natural extensions of the current work include

the investigation of thermal/mechanical fatigue loading and the behavior of off-

axis lamina under uniaxial loading. If successfully completed, multiple dimensions,

instead of the one-dimensional shear-lag analysis, should then be considered and

finally, a general state of loading may be incorporated in the analysis.

As mentioned, the current analysis investigates the behavior of CMCs under

room temperature conditions. Incorporating temperature effects, whether due to

isothermal or thermal/mechanical fatigue will most likely require some modifications

to the current analysis in order to account for time/temperature dependent material

properties, as well as the oxidation effects along the fiber/matrix interface [23, 29,

30,51,101,108,192]. In general, the latter can be handled by allowing the interface

parameters Ti and 7,1at to be time and temperature dependent. Furthermore, because

of the assumed critical matrix strain energy criteria, the degradation in the composite

constituents due to time, temperature and fatigue may be modeled via adjustments

in the critical strain energies, i.e. U,,.(t, AT, N) and Ucrf (t, AT, N)t [42,74,95,

165,190,204]. This would permit the development of additional damages. Empirical

tt: time
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or semi-empirical relations would most likely need to be developed. Also, when

varying ply orientation, the critical energies may become a function of the fiber

angle, 0, e.g. Ucrm(0). Hopefully, the critical strain energies for off-axis plies could

be estimated much in the same manner as presented in chapter five of this document

for the cross-ply laminates. That is, the critical energies for multi-angled laminates

are a function of the critical energy of the unidirectional lamina, e.g. a e45 = ' • 0

where 0 < p < 1. Analysis of two-dimensional woven composites might also be

considered [105].

Because of the failure criteria used in the current analysis, the present model

formulation may be extended to consider a multi-dimensional unit-cell in which the

off-axis (transverse) behavior of the laminate may be included. This would per-

mit the examination of multi-axial loading, as well as the incorporation of Poisson's

effects into the analysis. Some work in this area has been accomplished and, in par-

ticular, the development of transverse strain in a unidirectional laminate has been

successfully modeled. Such data are also important for investigating longitudinal

splitting in ceramic matrix composites. The analysis is similar to that derived by

Robertson and Mall for metal matrix composites [159]. The micromechanics solu-

tion can then be embedded into classical laminate plate and finite element schemes

to consider the behavior of a general ceramic matrix component under arbitrary

conditions of loading [1,2,136,160].

7.2 Estimation of Interface Properties

The variables ri, Tult and ri(N) are influential parameters and appear in most

failure criteria and constitutive laws governing the behavior of ceramic matrix com-

posites and, therefore, accurate representations of these parameters are critical for

the majority of numerical analyses. Unfortunately, empirical estimates of the inter-

face (frictional) resistance (ri); the ultimate shear strength (Tult), and the degradation

of the interface shear [i(N)] are difficult to obtain and are unreliable. As a result,
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many numerical models have been used to approximate these parameters, includ-

ing estimates based on empirical fits of stress-strain, stress-strain hysteresis, elastic

modulus, strain ratchetting, and S-N data. The current model may also be used to

estimate the interface properties by matching the experimental data. It is important

to recognize that both the macromechanical (e.g. stress-strain) and micromechanical

(e.g. crack density evolution) aspects of the composite behavior must be matched.

As presented earlier and in appendix B, assessing the interface properties based on

the macromechanical response only may prove inaccurate.

Another assumption employed in the current analysis is that the frictional

resistance within any debonded regions is independent of location or the loading

environment. In general, the frictional resistance will vary along the length of the

composite. Moreover, the interface shear, ri, will depend on the loading direction

(e.g. Poisson's effects) and the relief of thermal stresses across the fiber/matrix

interface. The latter results from the development of constituent damages. For the

current analysis, the interface shear, ri, is assumed to be a known lamina property,

eliminating the need for further definition according to Eq. (7.1).

Ti =Piol h  (7.1)

In general, the interface stress, ui h, may be estimated from the Lam6 solution for

thick concentric cylinders under uniform pressure loadings [188]. For each fiber/matrix

cross-section, the pressure might depend on the thermal mismatch and the Poisson

contractions. The latter changes sign with the loading direction.

The size and shape of the stress-strain hysteresis loops is of interest not only as

an indicator of damage, but also in regards to energy dissipation and heat transfer.

Kotil et al devised a numerical model for investigating the development of hysteresis

along purely frictional interfaces [100]. It is recommended that a similar study

be undertaken with the current analysis. By comparing predicted hysteresis with
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experimental observations, much insight into the progression of debonding, d, and

the degradation in interface shear, i(N), can be obtained. Furthermore, the energy

dissipated per unit volume, which is given by the area within the hysteresis loop,

may be a reasonable indicator for the fatigue life of a given laminate [144].

The shape of the stress-strain hysteresis response for a ceramic matrix com-

posite typically undergoes a variety of observable changes. Initially, during the first

few cycles, the loops are typically "open" owing to variations in the frictional sliding

and the formation of damages. As loading continues and damages evolve (and reach

steady-state), the hysteresis loops close. Moreover, the shape of the loops are, on

average, initially symmetric about a linear tangent drawn from one tip of the loop to

the other (i.e. maximum strain to residual strain). However, at some point, believed

to correspond with the onset of fiber failure, the symmetry is lost. The hysteresis

loops then become "cusped" or "S-shaped" in appearance. The latter is typical of

frictional joints under uniform pressure [60], indicating a structural, not material

response. This may indicate complete debonding of the constituents.

The size (width) of the stress-strain hysteresis loop may also vary extensively

during the fatigue cycling. In general, the loop width increases during the initial

cycles due to the development of microstructural damages. Eventually, as the in-

terface wears, the loop width may decrease. In some cases, the width vanishes and

the response becomes essentially a linear line. Each of these configurations may be

generated from the current analysis. Hence a detailed comparison of the origins of

hysteresis might prove appropriate.

7.3 Damage Progression

The evolution of transverse and matrix cracks is fairly easy, albeit tedious,

to obtain. Unfortunately, the same is not true with interface debonds and fiber

fractures. Currently, there is no accurate procedure for measuring these damages.
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To date, the best approach seems to be acoustic emissions; however, the confidence

in identifying specific causes of "a.e. hits" is low.

The initiation and evolution of fiber fractures could possibly be determined

more accurately by a series of tests in which a laminate is tested, and then immersed

in a chemical solution which dissolves the matrix, but leaves the fibers intact. Such

procedures have been used to determine the fiber volume fraction of a given com-

posite. Once the matrix is removed, the fiber fractures could be counted. Of course,

such a procedure is quite tedious especially since a large number of tests would be

required to get a time-history representation of the fiber fracture process. Further-

more, the variability between specimens would introduce some uncertainty. Edge

replication techniques for estimating the number of fracture fibers are questionable

since the surface fibers are likely to be damaged during specimen preparation. In

addition, the load carried by surface fibers will likely differ than for those in the inte-

rior since the fiber boundary conditions might be significantly different (e.g. surface

fibers have a free boundary).

Estimating the extent of debonding presents even more problems due to the

subtle nature of this failure mode. As a result, therefore, the debonding process

will most likely need to be estimated numerically. If accurate assessments of matrix

and fiber fractures can be obtained, it is reasonable to assume that any additional

material compliance results from interface debonding. Furthermore, stress-strain

hysteresis, frictional heating, and strain ratchetting could all be used to confirm the

results.

7.4 Transverse Ply Stresses

Recall that the shear-lag formulation for the cross-ply laminate assumes that

the stress in the transverse ply, ut(x), is not altered by matrix cracks within the

0' plies. The validity of this assumption needs further examination. An alternative

method is to superimpose known solutions. Unfortunately, satisfying the boundary
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condition of all three entities (900 ply, fiber of the 00 ply and matrix of the 00 ply)

is so difficult that it makes such a procedure impractical for a general damage state.

Instead Eq. (7.2) is offered as an alternate solution.

OT(X) { (F -x)[O() + T(] }-1  (7.2)

where aT1 (x) and aT (x) are solutions to known configurations and F(x) is a function

which ensures equilibrium is satisfied. The most obvious advantage of this approach

is that the zero boundary condition along any fracture planes are satisfied. Further,

if UT 1 (x) = OT2 (x), then UT(X) = T 1(x) = oT 2(x). An investigation which assumed

that aT, (x) was the transverse stress which develops in a representative volume

element (RVE) with only matrix cracks, and uT2(x) was the solution in a RVE

with only transverse cracks (LT = L) showed some improvement in modeling a

RVE with co-planer transverse and matrix cracks. Further study is recommended.

Alternatively, the solution from Nairn could be employed [1381.

The constituent and lamina stresses are both dependent on the shear-lag pa-

rameters, /3 and A, for the present analysis. Moreover, the formulation of these pa-

rameters is dependent on the assumed form of the two-dimensional constituent/lamina

displacements (reference chapter three). Many relationships for these parameters

have been presented in the literature. A few of which are provided below. Clearly,

the problem will be dependent of the choice of /3 and A, and therefore each of the

relationships might be investigated.

The shear-lag parameter for the unidirectional analysis, /3, was derived by Kuo

& Chou and Daniel et al [40,106]. Daniel et al assumed that the shear stresses varied

linearly in the fiber and by (cl/r 2 + c 2 ) in the matrix where r is the radial coordinate

and c, and c2 are constant. Kuo and Chou also had a linear distribution within the

fiber but the variation within the matrix was found to vary as cl(C2 /r + c3 r) where

C1 , c2, and c3 are again constant. The respective shear-lag parameters are shown

7-6



below for Kuo & Chou and Daniel et al, respectively.

2 = 8 El [1 1 2 1 f 1

r328 E- [] + L +- In - 3 - 2L-)1 (3.48)
rf 2 Ef Em [.v C f G,\Vm2 Vf Vm/)I

2 _ 2E, Emr{ + 1 ( 2 vf(rf - R)( 4 + (rf/R) + vf) + rf1 + V)Jvmrf EfEm 4G Gm (1 - vf) 2  V

(7.3)

Both parameters are based only upon the basic constituent properties and the lam-

inate geometry.

Several expressions for A have also been proposed. Some of these are given

below [112,118,168].

A 2  G, dE1 + dE2 (7.4)
d, dbEj E 2

A2 _ 3G(bE1 + dE2 ) (7.5)
bd2E1 E2

A 2 = 3G 1 3 G 23  (bE 1 + dE2 ) (7.6)
(bG 23 + dG13) bdEiE2

For the current analysis,

E b~d
A2 = HxE, bd (3.76)Ej2 bd

For the above equations, G, and d, are the shear modulus and the thickness of an

assumed interlaminar shear region [118], and G is the shear modulus of the transverse

ply.

7.5 Computer Code/Numerical Algorithms

When developing the Fortran code, limited foresight was given to computa-

tional efficiency, and therefore one area for improvement lies in the reformulation

of the computer code itself. The procedures for calling subroutines; passing vari-

able, and looping are areas for possible improvement. The largest gain in efficiency,
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however, will most likely come from the reformulation of the numerical/convergence

algorithms used in conjunction with the failure criteria. For example, in the cross-

ply analysis, the transverse crack spacing, Lt; the matrix crack spacing, L, and the

debond lengths, dl and d,, must all be determined simultaneously. Furthermore,

the solutions are coupled. Several CPU run times are shown in Table 7.1. Re-

sults are shown for a Sparc 10. For the unidirectional laminate, a,,, = 280 MPa

and 7Z=0.0714. The CMC material is SiC/CAS. The results in Table 7.1 for the

cross-ply laminate are for a [03/90/03], SiC/CAS laminate with omax=250 MPa and

R=0.08.

Table 7.1 CPU run time (see) for various loading cycles (N)
unidirectional cross-ply

N 1 10 20 50 1 10 20 50
sec 6.9 9.8 12.3 19.0 74.2 342.5 641.9 1548.5

Currently, only rudimentary convergence algorithms are employed. It is pos-

sible that better techniques exist. Under the present formulation, at any stress

increment, n, an initial guess for a damage parameter, say p E {Lt, L, di, d,}, is

obtained based upon the previous trends, e.g. Pn = Pn-1 + ApN- 1. Convergence is

then sought based upon the specific failure criteria. For example, under the max-

imum stress criterion for debonding, the parameter p is adjusted according to the

relative magnitude of the maximum interface shear stress to the interface shear

strength according to

P = Pi-1 + vi (Timaxi -_ TUt (7.7)
Tult

whereas under the critical matrix strain energy criterion

S= Pi-l + vi (Ui - Ucrm) (7.8)
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The variable V is an adjustable parameter to speed the rate of convergence. The slip

distances yi, yr, z, and zr are also determined in a similar manner.

Separate from the convergence schemes, a few numerical integration algorithms

are used. These appear in the cross-ply analysis and are used to determine the

constituent strain energies, Uf and Urn, and the laminate strain, c. Currently Newton-

Cotes formulae are employed with no apparent problems. However, the resulting

error has not been calculated. Moreover, alternate solutions might be sought.
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Appendix A. Fracture in Brittle Non-Homogeneous Media

This appendix details the fracture processes associated with ceramic matrix

composites, including discussions on fracture in brittle homogeneous materials; tough-

ening mechanisms associated with fiber-reinforcement, and the role of the fiber/matrix

interface on the progression of damages and load transfer. Also several failure criteria

common to brittle composites are reviewed. The purpose of the latter is to provide

a general introduction to some of the more traditional failure criteria, as well as to

make apparent some of the advantages and disadvantages of these classical solutions.

In addition, the discussion should familiarize the reader with some of the basics on

model formulation. In doing so, this appendix acknowledges that even though thor-

ough understanding of fracture in brittle materials is important, the main objective

of this study is to capture the residual laminate properties (e.g. residual strength

and modulus) which are defined by the macromechanical behavior observed in the

stress-strain response. The specific details of a single fracture propagating around

a bi-material interface are not the focus of the current investigation; rather only to

determine an equivalent damage state which yields the desired laminate response.

A.1 Introduction

Monolithic ceramics may be toughened with the incorporation of small diam-

eter reinforcing fibers which maintain some assemblage of integrity in the ceramic

despite the evolution of multiple cracks within the ceramic matrix [140,169]. The

fibers aid in load transfer, reduce crack-tip stress intensities by producing closing

tractions across crack planes, and also induce energy dissipating mechanisms which

reduce the propensity for the creation of additional damages (chapter two). These

effects are what provide ceramic matrix composites (CMCs) with their exceptional

toughness and non-catastrophic failure mode. Moreover, the characteristics of the

interface influence the ability of the fibers to transfer load and dissipate energy. If
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the constituents are strongly adhered, stresses are readily transferred between the

constituents such that the probability of fiber fracture is enhanced as large crack-tip

stresses are transferred to the fiber. Weaker interfaces (e.g. frictional) reduce the

latter effect, but also decrease the utility of the fibers. The interface strength can

be optimized to maximize toughness. This appendix examines both toughening and

interface design in CMCs. First, however, fracture in ceramics and ceramic compos-

ites is investigated. The purpose is to familiarize the reader on not only the reasons

for why cracks propagate so readily through ceramic materials, but also on what can

be done to prevent it.

A.2 Fracture of Ceramic Materials

Figure A. 1 illustrates a penny-shaped crack within a homogeneous linear-elastic

medium. The well-known expression for the stresses in the vicinity of the crack tip

G

Crack Plane
I-----------

Figure A.1 Penny-shaped crack in a homogeneous medium.
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is given by Eq. (A.1) where r and 0 are the radial and circumferential directions

illustrated in Fig. A.2.
K

oij = Krfi i(0) (A.1)
V2 rr

The parameter K is the crack-tip stress intensity factor, and fij(0) is a function of the

angle 0 and is typically dependent on the material geometry and loading condition.

For a stress-free crack in an infinite plate, for example, K = ar.Vi -a where ao, is the

far-field applied stress and a is the crack length. For a material free of any prominent

fractures, a is the average microstructural flaw size.

y

rZ x

G

Figure A.2 Crack-tip stresses in an arbitrary body.

For linear-elastic materials, fracture occurs when the stress intensity factor K

attains a critical value K which is the mode I fracture toughness of the material.

That is, crack growth occurs when K > Kc. For conditions of plane strain, K is a

material constant and is dependent on the surface energy, -ym, associated with the
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molecular bonding in the material of interest. In particular,

(c)2 Eg (A.2)
1 - V2

where gc = 2-,m. The parameter gc is known as the critical strain energy release rate

and has units of N/m. Hence, in accordance with Eq. (A.2), the fracture criterion

in Eq. (A.1) also be expressed in terms of energy, i.e.

Egm (A.3)Vrj 2(1 - V2)7rr f ( O) (13

where gn = K2/1E. As before, crack growth occurs whenever g, >_ gc. The variable

g, is the crack-tip energy release rate, and in general varies with loading and the

fracture geometry. As with K , gc is a material constant.

The subscript 1 in K indicates that the crack propagation results from a pure

mode I opening (Fig. A.3). In general, the motion of the crack surface relative to

the loading axis can be described by three orthogonal components of a global system

of coordinates. In practice, therefore, K is divided into three cracking modes which

are then superimposed to describe a general state of fracture. Stresses normal to the

crack plane produce mode I opening; in-plane shear results in mode II sliding, and

out-of-plane shear yields mode III tearing (Fig. A.3). Deformations resulting from

application of more than one mode are referred to as mixed mode. For the present

analysis, only mode I deformations are considered. As a result, all crack growth is

orthogonal to the loading axis.

Cracks propagate readily in ceramic materials because of their low fracture

toughness, K. In fact, I for a ceramic is typically much smaller (by an order

magnitude or more) then for say a ductile metal. As an example, K for a silicon

carbide ceramic falls between 2 and 5 MPa/v/f-. This is compared to 50 MPa/V/-

for a low carbon steel, and 100-300 MPa/\/- for copper and aluminum [25]. Fur-

thermore, because of the low fracture toughness of ceramic materials, once a crack
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Mode 1 Mode 2 Mode 3

Opening mode Sliding mode Tearing mode

Figure A.3 Crack displacement modes.

begins to propagate, the stress intensity at the crack tip remains larger than the

material fracture toughness (i.e. K > K ) and the crack continues to grow. In most

metals, on the other hand, local plasticity effects tend to lower the stress intensity

factor such that K < Kji and the crack propagation ceases. Hence, the fracture

process in brittle materials may also be improved by either reducing the crack-tip

stress intensity, K, or by increasing the material fracture toughness, J. Both av-

enues continue to be aggressively pursued. The latter is accomplished through the

reduction of material imperfections and is associated with improvements in the man-

ufacturing process. Fiber reinforcement, on the other hand, reduces the impact of

the matrix failure. One consequence, however, is that multiple fractures form within

the composite matrix prior to laminate failure.

Unlike polymer based (PMCs) or metal-matrix composites (MMCs) in which

the progression of damages has been fairly well characterized, fracture in brittle com-
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posites is a less mature area, stochastic in nature, and sensitive to many parameters

(material imperfections, stress concentrations, etc). Microstructural damages can,

of course, develop within PMCs and MMCs, however, neither PMCs nor MMCs are

dominated by the deluge of critical microstructural flaws as with ceramic compos-

ites. For CMCs, the ratio of the fiber modulus to the matrix modulus for CMCs is

typically of order one, compared to 10 or 100 for PMCs and MMCs. In addition,

the functionality of the fiber in CMCs is fundamentally different than with these

other types of composites. For example, the reinforcing fibers in CMCs are not the

main load bearing member. Instead, bridging fibers maintain the integrity of the

composite in spite of extensive matrix cracking. The additional toughening allows

CMCs to be used for a number of applications.

Because of their thermal and wear properties, CMCs are ideal materials for

components such as dies and tool bits, seals, nozzles, grinding wheels, and brakes.

However, CMCs are also finding their way into many diverse industries. For example,

ceramic composites are not only used in aircraft structures, rocket nozzles, and

turbine engines, but also in armor plating, missile radomes, pressure sensors, and

even artificial teeth and heart valves; [73] proving that CMCs are viable candidates

for a wide range of applications over large temperature regimes. In addition, as with

most composites, CMCs offer the promise of providing significant weight savings

for many structural components. Automotive engines, for example, could not only

be designed to run hotter, but also to be lighter in weight. This could result in a

significant savings in the specific fuel consumption. However, as with many advanced

materials, design and manufacturing cost is an important consideration [191].

The market size for aerospace and defense related applications of ceramic com-

posites is projected to approach five hundred million dollars a year by the year

2000 [187]. The United States government has already invested approximately a

quarter of a billion dollars in research and development of ceramic matrix compos-

ites over the period of 1979 to 1989 [128]. However, a survey conducted by the
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Department of Defense (DOD) Ceramics Information Analysis Center (CIAC) con-

cluded that although the funds appeared to have been invested wisely, the life of

CMC components when subjected to fatigue loadings could not be adequately pre-

dicted due to the lack of available models [148]. The objective, in many cases, is

to model the macromechanical behavior of the composite material with emphasis

on accurate predictions of the residual strength, stiffness, and life cycle. Hence,

modeling the laminate's stress-strain response is desired. This, however, calls for an

estimate laminate's damage progression, and therefore, some focus of the laminate's

micromechanical behavior is in order.

Prior to laminate failure, as damage forms within the composite, the material's

compliance gradually increases. This produces the non-linear stress-strain behavior

observed during experiments (Fig. A.4). The increased compliance can be estimated

from simple one-dimensional models if the average number of cracks can be deter-

mined [115]. Unfortunately, the most common technique of estimating the crack

Stress

Vf gf

Pseudo-Ductility
resulting from

Matrix Cracking

Strain

Figure A.4 Stress-strain response of a ceramic matrix composite.

density is to manually count the cracks. This is accomplished by examining acetate

replicas of the composite surface obtained during experimental tests of the laminate.
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This typically involves interrupting the test and pressing a piece of acetate on one

face of the composite to obtain a reproduction of the composite surface. The tests

are usually stopped during a tensile portion of the loading cycle so that the crack

openings are more apparent. The acetate replica is examined under a microscope

and the average crack density is estimated by manually counting the cracks. This

can be quite a tedious process especially to get a time history representation of the

crack density progression since the process must be accomplished a number of times.

Other problems with this approach are that the representative damage is limited

to only the surface damage appearing on the outer edge of the specimen, and that

discrepancies in the data may result if different techniques are used to count the

cracks. For example, how long does a fracture need to be before it constitutes a

matrix crack? Also, even if the matrix crack density can be determined, the num-

ber of fiber fractures and the extent of interface debonding are almost impossible to

determine. This is not only because of the relative size of the crack openings, but

also because for these damage modes, in particular, the extent of damage is likely

to differ significantly from the surface damage captured on the replica. For these

reasons, estimating or verifying the extent of damage within brittle composites is

certainly an inexact science.

There are, of course, alternate techniques for gathering crack density data

[13, 48, 98,193,199]. For example, the information may be obtained optically using

a highly magnified lens [199]. In addition, since matrix breaks are audible, the

crack density may be estimated using acoustic sensors [193]. In some cases, acoustic

emissions have been used to gather information on matrix cracking, fiber fracture

and even interface debonding. The various damage modes can be differentiated by

the strength (i.e. decibel level) of the the emission.
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A.3 Toughening Mechanisms

In order to appreciate the details of the stress-strain (macroscopic) response, a

better understanding of the fracture and toughening mechanisms which dictate the

shape of the curve is required. These are now reviewed, and should provide some

insight into the requirements and potential difficulties in modeling the rather benign

response illustrated in Fig. A.4.

In the early 1900's, Griffith investigated the fracture characteristics of brittle

materials [61]. He is best known for the development of an energy equilibrium

criterion which states that crack propagation will occur in a brittle homogeneous

material if the energy released upon crack growth is sufficient to provide all the energy

required for crack growth [43]. An important consequence is that crack growth may

be slowed or even arrested if energy used to propagate the fracture can be dissipated.

The Griffith criterion has been recently shown to be applicable to brittle non-

homogeneous materials [129]. This has led to a better understanding of multiple

matrix cracking in CMCs. As matrix cracks advance toward and envelop embedded

fibers, a number of events can take place. For example, if the fiber and matrix are

physically (i.e. chemically) bonded to one another, the large stress fields near the

crack tip can cause the constituents to debond. Since this debonding process reduces

the energy available to propagate the main fracture, interface debonding contributes

positively toward toughening of the composite. If the interface debonds and the fiber

remains intact such that the fiber continues to bridge the crack plane, energy will be

dissipated as the matrix slides along the fiber since the crack opening displacement

must increase in order for the crack front to advance. This frictional sliding also

contributes toward toughening. In fact, frictional heating within debonded regions is

one of the primary toughening mechanisms. Hence, it is advantageous to have the

fiber continue to bridge the crack plane since this not only increases the heat loss,

but also as mentioned earlier, bridging fibers provide closing tractions which tend to
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reduce the crack-tip stress intensities [127]. However, the fibers do not always bridge

the crack plane.

Consider a single crack as it propagates across the laminate microstructure

(Fig. A.5). As a crack advances toward a fiber, the fiber may break, pull out, or

Fiber
Fractured Pul-u

FiberPull-out B~ridging Fiber

Crack Opening
Displacement

Interfacial Slip
Matrix and Debonding

Crack

Figure A.5 Failure mechanisms within ceramic matrix composites.

continue to bridge the matrix. Which of these events takes place is largely dependent

on the "strength" of the fiber/matrix interface. If the interface is too tight, the large

crack-tip stresses are easily transferred to the fiber and the crack propagates through

the fiber (i.e. fiber fracture). If, on the other hand, the interface is loose, the fiber

may debond and pull free from the matrix. In general, this process (fiber pull-

out) may be a large contributor to the material's toughness due to potentially large

frictional forces; however, if the interface is too weak little energy is dissipated since

the frictional sliding is negligible. In both cases (extremely weak or strong interfaces),

no appreciable improvement in the mechanical properties of the composite is realized.

Fiber failure, for example, releases only a small amount of energy equal to the stored
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elastic energy in the fiber. Further, after pull-out or failure, the fiber no longer

effectively contributes to the strength of the ceramic.

If the interface is properly designed, the percentage of fibers which continue

to bridge the crack plane can be enhanced. This promotes toughness through

load transfer and continued frictional energy losses. Hence, "tuning" the inter-

face strength though proper design and manufacturing is a very important area

of research in composite engineering. Furthermore, because of this ability to tune

material properties, such as in the case with CMCs, there has been a fundamental

change over the past thirty years in how material engineering is approached. In the

past, materials were simply applied to structural components. Today, through im-

proved understanding of material science, advanced materials are able to be designed

for specific applications. Ceramic matrix composites represent an excellent example

of the change in philosophy. Tuning the strength of the interface in order to obtain

the desired lamina properties is covered in the next section.

A.4 Interface Design

Design of composite materials not only includes optimizing the laminate by

adjusting the interlaminar properties (e.g. ply orientation, stacking sequence), but

also includes the optimization of lamina properties. Hence, improvements in both

the strength and failure characteristics of the individual plies are desired and can

be accomplished, in large part, by controlling the properties along the fiber/matrix

interface. The latter is accomplished primarily by two techniques: (1) by adjusting

the residual stresses across the plane of the interface and (2) through the application

of interface coatings.

During processing, residual thermal stresses develop normal to the interface

due to the mismatch in the coefficients of thermal expansion between the fiber and

matrix. For most CMCs, the thermal coefficient of the matrix is greater than that
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of the fiber (i.e. am > af). This creates a residual compressive stress across the

interface which can be adjusted to optimize the frictional energy dissipation.

An alternate means of adjusting the strength of the interface is through the

use of different interface coatings. During processing, a chemical reaction occurs

between the constituents which forms a thin (10 nm) carbon layer which helps to

weaken the interface [87]. Manufacturers often add coatings to the fiber to enhance

the result [80,114,120,122]. Carbon and silicon carbide are common coatings used

in the design of CMCs. Unfortunately, the application of the coating is a complex

procedure since the carbon interphase can oxidize and form a continuous silica layer

under elevated temperatures [5]. This reaction can result in an undesirable increase

in the interface strength which has been found to decrease the composite toughness

by up to two-thirds [6]. If properly designed, however, the effects of oxidation can

be reduced [30,131,166].

Although the strength of the interface is somewhat easy to control, quantifying

the strength of the interface can be quite difficult. Typically, two parameters are

used: the maximum interface shear strength associated with bonded fiber/matrix

regions, 7-ult, and the interface shear within debonded regions, ri. The latter is

assumed to be constant along the debonded region, and governed by Coulomb friction

according to

r 2 =/ th (A.4)

where pi is the friction coefficient between the fiber and matrix, and o4h is the

residual thermal stress across the interface.

There has been an extensive amount of research devoted to characterizing the

parameters T,,t and Ti. Both experimental [55,92,93,99,135] and numerical [31,37,

54, 55, 78,121,186] studies have been conducted. The most common experimental

techniques are single-fiber push-in and pull-out tests; however, there is some question

of the utility of such tests since these techniques induced unwarranted Poisson's
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effects and also fail to account for crack-tip stress fields [167]. The numerical studies

typically involve fitting empirical data. Since the interface controls so many of

the characteristics of the CMC, a number of approaches are possible. The interface

stresses rTlt and ri can be estimated, for example, through curve fits of empirical crack

density or stress-strain data [37], or by matching the shape and location of hysteresis

curves [54] or the fatigue life diagrams (e.g. S-N behavior, modulus degradation)

[176]. In general, each of the predominant damage modes, matrix cracking, interface

debonding and fiber failure, is dependent on the interface properties. Several failure

criteria governing the initiation and evolution of matrix cracks are now considered.

A.5 Existing Failure Criteria for Matrix Cracking

Two dominant failure criteria are present in the literature: maximum stress

(strain) theories and the more traditional fracture mechanics approaches. The lat-

ter category including both the energy balance techniques (discrete solutions) of

Aveston, Cooper and Kelly [8], as well as the stress intensity solutions (continuum

solutions) similar to those proposed by Marshal, Cox and Evans [127]. The solutions

from Aveston, Cooper & Kelly, and Marshal, Cox & Evans are typically referred to

as the ACK and MCE theories, respectively. The theories presented in this section

are divided into two categories: those which employ a maximum stress criterion and

those using more traditional fracture mechanics approaches. However, as illustrated

by the ACK solution, there can be some overlap between the two fields.

A.5.1 Maximum Stress Criterion. The maximum stress criterion assumes

that a new matrix crack will form whenever the matrix stress exceeds the ultimate

strength of the matrix, omt,,. Furthermore, the matrix strength is assumed to be

single-valued and a known material property. Since under the micromechanics ap-

proach, the matrix cracks are assumed to be uniformly spaced throughout the com-

posites, the maximum matrix stress is guaranteed to exist at the mid-spans of the

existing cracks. Hence, new cracks form at locations equal-distance from adjacent
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crack, and as such the composite's crack density doubles with their formation. For

the unit-cell shown in Fig. A.6, for example, a matrix crack is assumed to form at

a the axial coordinate x = 0 whenever, the peak stress at this location, a,, exceeds

the matrix strength, i.e.

a1 > amut. (A.5)

Equation (A.5) is the failure criterion.

Matrix
Stress

L

x=O

x

Figure A.6 Distribution of the matrix stress in a one-dimensional unit-cell.

For a moment, define some parameter x' which characterizes the distance it

takes the stress in the matrix to go from zero along the plane of the matrix crack to

a peak value of 1 [Fig. A.6]. If x' is small compared to the average crack spacing L,

then once Eq. (A.5) is satisfied at x = 0 such that a matrix crack is allowed to form

at this location, it is likely that Eq. (A.5) will be satisfied at a number of locations

(e.g. L/4, L/8, etc) and that an extensive amount of matrix cracking will occur

instantaneously. This concept is illustrated in Fig. A.7.

First assume that matrix crack spacing is L, and that the matrix stress dis-

tribution is as given by Fig. A.7 (a). In addition, assume that a1 is such that the
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Figure A.7 Evolution of matrix cracks as predicted from a maximum stress
criterion.

failure criterion is satisfied (i.e. O = , mutt), and therefore, allows a new crack to

form at the mid-spans of the existing cracks. Now consider the redistribution of

stresses within the matrix [Fig. A.7 (b)]. Note that since x' is small compared to L,

the stress in the matrix again reaches a peak value of a,, and therefore in accordance

with Eq. (A.5), additional cracks are assumed to form [Fig. A.7 (c)]. This procedure

would be repeated until Eq. (A.5) is no longer satisfied [Fig. A.7 (d)]. Note that

Figs. A.7 (a) through (d) are assumed to occur instantaneously, and at the same

level applied stress. This is one of the drawbacks of the maximum stress criterion:

an extensive amount of cracking occurs at a single applied stress. Hence, the maxi-

mum stress criterion is not likely to capture the gradual evolution of matrix cracking

observed experimentally. This results in a "stepped" stress-strain prediction rather
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than a gradual non-linear deviation. A sketch of a crack density versus applied stress

prediction and stress-strain response are illustrated in Fig. A.8.

Crack Stress
Density

experiment -

max stress
prediction ----- ------ max stress

x /prediction

experiment

Stress Strain

Figure A.8 Crack density and stress-strain evolutions based on a maximum stress
criterion.

Aveston, Cooper and Kelly (ACK). The maximum stress crite-

rion was first applied to ceramic matrix composites by Aveston, Cooper and Kelly

(ACK) [8]. Their analysis considers a unit-cell similar to that in Fig. 2.11 in which

the fiber/matrix interface is assumed to be purely frictional; having a constant in-

terface shear stress. Failure of the matrix is assumed governed by a single-valued

matrix stress (strain), and the matrix cracks are assumed to be infinitely long and

uniformly spaced. No fiber damage is considered. Thermal effects are also neglected.

The failure criterion employed by ACK assumes that matrix cracking occurs

whenever the stress in the matrix, am(x), exceeds the ultimate strength of the matrix,

O'm t , i.e.

UMWx >_ amy., .  (A.-6)

Since the laminate is initially assumed to be free of any damage, the matrix stress

Um(x) has the same magnitude at all points in the unit-cell. Hence, once Eq. (A.6)

is satisfied at a single point, it is satisfied everywhere. This results in an extensive

amount of matrix cracking occurring instantaneously as previously discussed. In
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addition, it should now be clear that or, = amc and L = Lisit = Lat. Both parame-

ters ccr, and Lsat are determined by ACK. The formulation for Lst is now presented

whereas the derivation for crc, is presented in section 2.6.2.1 since it falls under the

fracture mechanics approach.

For the analysis, consider the unit-cell shown in Fig. A.9, and assume that the

applied stress is just sufficient to cause the fracture to form, i.e.

El am 
(A.7)

Em ut

It is known that along the plane of the matrix crack, the stress in the matrix vanishes

at the free boundary and the fiber is forced to carry the entire load. Away from the

crack plane, the load is redistributed between the constituents. Furthermore, in

the ACK model the interface shear has been assumed constant such that the stress

transfer is linear (Fig. A.9). The parameter x' represents the stress transfer distance

or, equivalently, the distance over which the fiber/matrix constituents slip.t

Vf

Fiber Stress Ef

2x'

Fiber-,

Matrix

Crack

Figure A.9 Fiber stress near a matrix crack for a completely debonded interface.

tThe stress transfer distance is the distance over which the presence of the matrix crack is felt.
In particular, it is the distance away from a crack plane required for the matrix stress to return to
its undamaged magnitude.
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The additional stress in the fiber due to the presence of the fracture will vary

from zero to a maximum of

a _ Ef Vm (A.8)
Vf Em Vf

and the additional strain in the fiber due to the crack is

a
(f = -CM.1, (A.9)

where a {vmEm} / {vfEf} and cm.,t = Ormt, /Em. Further, when multiple matrix

cracks exist, the final crack spacing must satisfy

x' < L,,t < 2x' (A. 10)

since upon completion of matrix cracking, the maximum stress in the matrix must

be less than am.* The matrix stress distributions for Lat = 2x' and Lsat = x' are

shown in Fig. A.10. In Fig. A.10 (a), the crack spacing is sufficient to allow the strain

Matrix Stre mult

2x" x

(a) (b)

Figure A.10 Matrix stress for a completely debonded interface: limiting cases.

in the matrix to reach the strength of the material. Hence for this case, Eq. (A.6) is

satisfied and additional matrix cracking would be allowed such that Lsat = x'. This
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is the limiting case. From statistical theory, the final crack spacing can be expected

to be 1.337x' [37].

From Fig. A.9, equilibrium along the plane of the crack requires

or 27-i' (111
a = Vf - - VmOmul t  (A.11)

rf r

Hence, from Eq. (A.8),
aI r f Vm Em,

= o. (A.12)
2i-i vf E1

Finally, the additional strain in the fiber due to the matrix cracking is

1 Vm_
f = VEmcm.t for Lat = 2x' (A.13)

2Ef Vf

and
1 3vm

f2Ef 4 vm t for Lsat x'. (A.14)

Therefore, from Eq. (A.10), the additional fiber strain resulting from failure of the

matrix can be shown to satisfy

alt < a < mut (A.15)

Since all matrix cracking has occurred at a single stress, the resulting stress-

strain response is characterized by a single step as illustrated in Fig. A.11. Initially,

the stress-strain response exhibits a stiffness of El. However, when the applied stress

has a magnitude of Em . , matrix cracking occurs. This results in a single jump in

strain satisfying Eq. (A.15). Beyond this stress, the stress-strain response is again

linear; however since the matrix has failed so extensively, the composite stiffness

approaches v1 Ef.
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Figure A.11 Stress-strain prediction when matrix cracking is predicted from a max-

imum stress criterion.

Lee and Daniel. Another model which employs a maximum

stress criterion and provides closed-form solutions for the average matrix crack spac-

ing was presented by Lee and Daniel [113]. Their model is based on a modified

shear-lag technique and considered matrix cracking in a partially bonded unit-cell.

Residual thermal stress fields are also considered in the analysis. As with the ACK

model, the matrix is assumed to fail whenever the stress in the matrix exceeds the

strength of the matrix material. Since thermal stresses are considered, the matrix is

assumed to fail when
or > E l (m, a ) (A. 16)

Em

where a 1h is the residual thermal stress in the matrix. In addition, for the shear-lag

formulation presented by Lee and Daniel, the stress in the matrix is given by

am(X) =(Eml  + 7ih) cosh[a (L/2 - x)]} (A.17)
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where a is the shear-lag constant as derived under their formulation [113]. Further-

more, the instantaneous average crack spacing can be determined by assuming that

new matrix cracks form at the mid-spans of existing cracks whenever Eq. (A.16) is

satisfied. This yields

2{ Emar+Elrm '

L = 2 cosh-' E.+E lam (A.18)-a Emu +r -E,(a m -am."t )

Unfortunately, just as with the ACK model, Eq. (A.18) predicts a very rapid satu-

ration of matrix cracking, and once again, the resulting stress-strain response is of

a stepped fashion (Fig. A.11). Neither approach (ACK or Lee and Daniel) is able

to capture the gradual evolution of matrix cracking observed experimentally. More-

over, the correct procedure for considering brittle fracture is through the use of the

critical energy release rate and, therefore, a number of fracture mechanics solutions

have been formulated [8, 20, 37, 54,127,129,196,201,213]. Several of these solutions

are reviewed below.

A.5.2 Fracture Mechanics Solutions. Because fracture mechanics ap-

proaches generally focus on conditions required to propagate a single fracture, they

are not, in general, suited for modeling the initiation and growth of multiple cracks

as required in the current analysis. The solutions are, however, well suited for inves-

tigating the salient characteristics of fracture, as well as determining which material

and laminate parameters influence the matrix failure. Such approaches also provide

estimates for the critical composite stress (a,,) and final crack densities (Lsat). In

order to capture the behavior of multiple cracking, however, additional factors such

as the statistical distribution of flaws and the interactions of adjacent cracks need

to be considered.

The models reviewed in this section are presented in three subsections. The

first two subsections (Discrete Models and Continuum Models) present established

fracture mechanics solutions which can be used to estimate a,, and Lsat. The dis-
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crete models are labeled as such since they consider each discrete fiber as a separate

entity. The continuum models, on the other hand, consider an effective distribu-

tion of closing tractions to account for the influence of bridging fibers. Hence, the

functionality of an individual fiber is lost in the collective. In the final subsection,

Evolution of Matrix Cracking, the nucleation and growth of matrix cracks for a > cUr

is discussed.

A.5.2.1 Discrete Models. The conditions for the onset of matrix

cracking can be determined by ensuring the formation of the cracks is energetically

consistent. This requires that the energies before and after crack formation must

satisfy

AU - AW + gm + Wfr = O (A.19)

where AW is the work done by the external load during crack formation, Wf r is the

frictional energy dissipated through interface sliding; g, is the strain energy release

rate available for matrix cracking, and AU is the total change in strain energy.

Formulations which employ Eq. (A.19) will be referred to as the energy balance

solutions. The most famous of which is the model presented by Aveston, Cooper

and Kelly (ACK) in which the energies within a simple unit-cell are considered [8].

Aveston, Cooper and Kelly. In conjunction with the maximum

stress criterion presented in section 2.6.1, the original ACK analysis also examined

the energetics of multiple fracture in brittle composites. The purpose was to explain

why multiple cracking occurred in composites and how a quick estimate of the strain

to the onset of multiple cracking could be obtained. In doing so, the analysis also

showed the effects of various material parameters on the matrix cracking. Several

important results are obtained. The first is that under the assumptions of the discrete

A-22



model, the strain energy release rate available for matrix cracking is

3 2 2Evmrf

gm 6Efv2TiE2 (A.20)

Further, equating g, to the matrix fracture energy, vmg , leads to a solution for the

initial matrix cracking stress

f 6Ejv}rE21g 1/3

O'cr Emvmrf " (A.21)

Note that Eq. (A.21) is a lower bound for or since variations in gm due to flaw

size and location have been neglected. In addition, the crack length was assumed

"long" (infinite), and therefore, independent of the crack-tip stress intensity. So-

lutions which consider incremental increase in the crack size are presented in the

next section. The following is a summary of the ACK analysis and is presented in a

format analogous to the review appearing in reference 129

Figure A.12 illustrates the discrete model to be considered. The fiber/matrix

interface is assumed to be completely debonded, and the interface slip is governed

by a constant interface shear, 7-i. The length of the fiber is assumed to be twice the

slip length, i.e. 2x'. Again, the parameter x' is the slip length needed to recover to

the pre-cracked stress state as defined in section 2.6.1. The stress T represents the

maximum fiber stress and occurs along the plane of the matrix crack (i.e. x = x').

This stress has a magnitude of avj. If c is defined as /E 1 then T = Eic/vf. The

crack opening displacement is 2U, and the far-field constituent stresses are

Ei-2 E , (A.22)

m E1_- EmC (A.23)
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Figure A.12 Discrete fiber model.

since thermal stresses are neglected in the original ACK analysis. In addition, since

the interface shear, Ti, is assumed constant, the constituent stresses near the fracture

are given by
af W) = aov +--,ri (A.24)

rf

am(x)= O 2r. (A.25)
Vm rf

Now, if uf(x) and um(x) represent the displacements in the fiber and matrix such

that

0u(x) = (Efux) (A.26)s~x= Esdx'

umu(x) = Em OUm(X) (A.27)
dx

then

uT(x) = ex + ri x2  for 0<x<x', (A.28)
Ef rf

um(x) = Cx + v-f Ti x2 for 0<x<x'. (A.29)
vm Emrf
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Further, the crack opening displacement is given by 2 [uf(x') - um(x')] which implies

rf v,, El- rf vm Em T 2. (A.30)
U 4rivEf 4r-E1Ef

Let p be the effective closing traction created from the bridging fiber. Then for the

discrete model, p = vfT. Further, from Eq. (A.30)

p =A-(A.31)

where u = El U/27r and 2 . It will be shown later that the

Srf vmEm J
effective traction under the continuum approach is of the same form as Eq. (A.31).

With the model now established, the energy terms in Eq. (A.19) can now be

established. The additional work performed by the external tractions during crack

formation is

AW = 2or {uf (x) - cx'} = j EfEl (v-E 2 63. (A.32)

The change in the strain energy per unit area is

U/ ao2 V /2 dx-EC 2X' rf Ef1 (vmE) 2 C3. (A.33)
/AU = Ef v--  fr~x E..- m Crm()xIi' 67i \vfEf

Finally, the work done (per unit area) by the frictional forces along the fiber / matrix

interface is

4 fX' rjEjEi (vmEm 2

Wfr (x) dx r Ef 3.  (A.34)

Substituting Eqs. (A.32), (A.33) and (A.34) into Eq. (A.19) yields Eq. (A.20).

Equations (A.10) and (A.21) follow directly.

Zok and Spearing. Zok and Spearing presented an analysis

similar to ACK in which the same energy balance approach was considered for the
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two damaged configurations illustrated in Fig. A.13 [213]. As with the ACK analysis,

tt tt t t

LA

(a) (b)

Figure A.13 Schematic diagrams of (a) periodic matrix cracks and (b) random
matrix cracks.

the interface was assumed to be debonded and the matrix cracks were assumed to

extend throughout the entire laminate cross-section. However, this time a reduction

in the matrix stress due to the interactions of adjacent cracks was included in the

analysis.

As the matrix fails, the crack spacing decreases. Eventually, the spacing may be

insufficient to permit a full recovery of matrix stress and this reduces the opportunity

for continued cracking. This phenomenon is sometimes referred to as a shielding or

screening effect. Zok and Spearing considered the influence of both periodic and

random crack spacing on the shielding aspects of brittle composites. For brevity

however, only the results for the first configuration (periodic cracks) are presented.

Shielding results when x' > L such that the stress in the matrix does not

fully recover (Fig. A.14). Two cases need to be considered: 1 < L/x' < 2 and

0 < L/x' < 1. In the first case, the existing cracks do not interfere with one another

(i.e. the matrix stress fully recovers), however, with the formation of a new crack,

the spacing is insufficient to permit the matrix stresses to recover. For 0 < L/x' < 1,

the pre-existing cracks screen one another even prior to the formation of the new
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Figure A.14 Shielding (screening) effect resulting from a sufficiently small crack
spacing.

crack. The net effect of the screening is that the strain energy release rate, g,, varies

with L/x'. The formulation follows directly from Eq. (A.19), but is somewhat more

involved than the ACK solution since the constituent stresses are a function of the

crack spacing in Zok and Spearing's analysis. The crack-tip strain energy release

rate is found to vary as

g- -41 4 ( 1 - L) for 1 < L/x' < 2, (A.35)

g-- = 4 for 0 < L/x' < 1. (A.36)

This variation is illustrated in Fig. A.15. An important result of this analysis is that

crack saturation does not occur instantly (i.e. 6sat 5 Orcr) as a result of the shielding

effect. The final cracking spacing and saturation stress are found to be Lsat = 1.26x'

and arat = 1.26orr, [213]. Hence, shielding slows matrix cracking by reducing crack-tip

stress intensities. This phenomenon was shown to be more prevalent under random

crack spacing [Fig. A.13 (b)].

A.5.2.2 Continuum Models. For mathematical purposes, it is con-

venient to "smooth the mechanical effect of the discrete system of unbroken fibers
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Figure A.15 Variation in the crack-tip strain energy release rate, gm/g,, as a func-
tion of the crack spacing L/x', for periodic matrix cracking.

that cross the crack and assume that the displacement distribution is everywhere

single-valued and smoothly varying." [129]. This is the idea behind the continuum

approach in which the net effect of the bridging fibers is modeled as a continuous

distribution of closing tractions (Fig. A.16). In the review of the ACK model pre-

sented earlier, it was shown for the discrete model that the closing tractions, p(x),

were proportional to the crack opening displacement, u(x) [Eq. (A.31)]. For the

continuum model, the relationship between these two parameters is

U()=21 f "- P(C d1 dt (A.37)
u(x) = 2 La 2 jt Vt-(

where a is the crack length. The later result was obtained from reference 129. The

corresponding stress intensity factor as determined under the formulation presented

by McCartney [129] is

K = cr, /r--Y where Y= 1 -P(X) (A.38)
A r28 - X
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Figure A.16 Continuum model

where P(X) is a normalized effective closing distribution such that when P(X) 0

(i.e. no fibers bridge the crack plane), K = rooVi---. The latter is recognized as the

solution for a stress-free crack in an infinite plate as presented earlier. For P(X) >

0, K decreases from this fundamental solution. Hence, as was observed with the

screening effects of adjacent cracks, bridging fibers reduce crack-tip stress intensities

by providing forces which reduce the crack opening displacements [127,129,196] These

forces, typically referred to as closing tractions, can be effectively modeled using

a continuous single-valued distribution, p(x). At the onset of crack propagation,

therefore, the energy release rate at the crack tip is given by

gm - fj p(x) da. (A.39)g m a

The models presented by Marshall, Cox & Evans (MCE) [127] and McCartney

[129] represent the classical solutions in this area (continuum models). Such models

are referred to as stress intensity solutions as opposed to the energy balance solutions

presented earlier. An important consequence of the MCE analysis is that for crack

lengths larger than some characteristic flaw size, c0, the crack-tip stress intensity

factor is independent of crack length. Thus, for a > c, the ACK solution [Eq. (A.21)]
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is valid. The characteristic length may be estimated by Eq. (A.40) [37].

1 " (/) v ..rfEl V-E--- 2/

c' - (g.)(1/3) [ v 1 E] (A.40)

In addition,

cr + a -3/4 (A.41)

where a* is the original ACK solution.

As illustrated in the preceding sections, there are a number of solutions which

yield estimates for the critical composite stress, o,. Perhaps the most referenced

of these are those presented by Aveston, Cooper & Kelly (ACK) [8], Marshall, Cox

& Evans (MCE) [127] and Budiansky, Hutchinson & Evans (BIlE) [20]. The ACK

and MCE models have been examined in the above discussion. The BHE model

considers steady-state crack growth under which it is assumed that the stress at

the crack front remains unchanged during incremental crack growth, and that the

upstream and downstream stress states, far ahead of and behind the crack front, do

not change [20]. The crack growth model is shown in Fig. A.17. where P and Pd

Aa

Downstream UpstreamPP

Figure A.17 Crack growth model.

are the upstream and downstream potential energies per unit cross-sectional area.
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Moreover, in order for the crack to advance an incremental distance which produces

a net increase in the crack area of Aa, the following must hold.

(P - Pd)Aa = AU (A.42)

Equation (A.42) is now the energy balance failure criterion where AU is the potential

energy loss during crack advancement. From the Betti-Maxwell theorem of reciprocal

displacements, it follows that

gm 2vmrr J( - ad) : (C- 6d) dV. (A.43)
2v-m~rr V O

From here, U., is estimated by setting gm= vmg .

In analogy to BHE, Weitsman and Zhu [201] formulated a criterion for the

formation of a new matrix crack which compared the energy levels of two discrete

(upstream and downstream) states. Rather than considering incremental growth a

single crack (BHE), however, Weitsman and Zhu considered two damaged states of

uniform crack spacing. "State I" was assumed to have a crack density of 1/L and

the crack density of "State II" was twice this amount. The failure criterion was

again that AU vmgm. Their solution is important to the present work since it is

the only known analytic criterion which has a finite stress range over which matrix

cracking is predicted. That is to say, the Weitsman and Zhu criterion does capture

some evolution of matrix cracking. Unfortunately, the criterion offered only a slight

improvement over the previous analyses. The solution presented by Weitsman and

Zhu is presented in greater detail in the chapter three.

A.5.2.3 Evolution of Matrix Cracking. Under the traditional fracture

mechanics approach, in order to capture the gradual evolution of matrix cracking

which is observed experimentally, the shielding and stochastic behavior of matrix

failure must be accounted for in the analysis. The shielding effect was discussed
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earlier in chapter two, and results from crack interactions once the matrix crack

density becomes sufficiently large. This interaction can reduce the driving force for

the propagation of additional cracks. In addition to this phenomenon, matrix crack-

ing is governed by statistical relations which relate the size and spatial distribution

of matrix flaws to their relative propagation stress. These relations have been well

publicized by William Curtin [37].

Curtin. As mentioned in the previous section, for relatively large

cracks (e.g. a > c,), the stress required to propagate the fracture is independent of

the flaw size [127]. The propagation stress is given by Eq. (A.21). Hence, if all flaws

inherent to the matrix are larger than c,, the statistical analysis becomes trivial.

However, experimentally, the evolution of cracking occurs over a finite stress range.

Hence, the statistical aspects of failure may be important. For flaws smaller than

the critical length determined by MCE, the stress required to propagate the flaw is

greater than that predicted by Eq. (A.21). It follows that if a distribution of flaw sizes

is incorporated in the analysis, then the matrix strength will also be characterized

by some distribution.

Curtin proposed modeling the crack progression using a 3-parameter Weibull

strength distribution [37]. In particular, the matrix strength distribution, -(a, V),

was taken as

V) =Vor (A.44)

where rn is the Weibull modulus, o is a scale parameter and a* is the minimum

stress for crack formation. These parameters may be chosen to match the empirical

data. V is the material volume, and V is a characteristic volume which contains one

flaw smaller than c* where

o = or* + 1 C (A.45)

A-32



Evans, Zok and McMeeking. As a final note, the work accom-

plished by Evans, Zok and McMeeking [54] serves as a comprehensive overview of

the matrix cracking process. Reference 54 discusses the initiation and evolution of

matrix cracking for both unidirectional and cross-ply laminates. Quasi-static and fa-

tigue loading are also considered. In addition, the effects of shielding, as well as the

statistic aspects of failure are addressed. A simple approximation for determining

the average crack spacing is also provided, and is shown below.

L ::{Lsat Ojam 1 } (A.46)

A.6 Additional Comments

This section investigates some of the simplifying assumptions employed in the

current model formulation, as well as several assumptions used in the development

of the failure criteria. In addition, some general observations on the fatigue response

of brittle composites are presented.

A.6.1 Micromechanics/Shear-lag Assumptions. In order to simplify the

analysis, a number of assumptions are made on the geometric arrangement of the

constituents and the configuration of the damages. In doing so, the analysis is

reduced to one dimension; however, a host of effects and the true nature of fracture

in CMCs is lost. For example, it is to be expected that because of the dominating role

of the fiber/matrix interface, the Poisson's effects near the bi-material regions may

be rather significant in determining the laminate response. The Poisson's effects may

prove especially important in debonded regions where the stress transfer is dependent

on the frictional resistance of the fiber/matrix constituents. This is particularly the

case when repeated and cyclic loadings are considered and in which the "direction"

of the Poisson's effects vary. The effect may be rather pronounced and manifests as

large variations in the shape of the stress-strain hysteresis loops predicted under the

analysis.
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The concentric cylinder models used in the present analysis assume that the

distribution of fibers in the composite matrix are uniform. From Fig. 2.10, this is

most certainly not the case [177]. To investigate the effects of the relative fiber spac-

ing on the strength of the brittle laminate, Weitsman and Beltzer recently introduced

an eccentric shear-lag model in which the fiber spacing in an extended representa-

tive volume element can be given some eccentricity [200]. The analysis found that

traditional models may significantly underestimate the loading effect near fractured

fibers, and as such the validity of current statistical failure distributions is question-

able. Furthermore, the accuracy of "dry" bundle tests for estimating the evolutions

of fiber fractures in in-situ composites is also in debate.

The assumptions used in the shear-lag derivation are also only gross approx-

imations. More accurate solutions do exist; however, because of their complexity,

the applicability of such models is limited [137,139]. Each problem will require an

assessment and trade-off between the accuracy of the assumed stress fields and the

ease of implementation. The primary assumption of the shear-lag model is that the

interface shear stress in bonded regions is proportional to the difference in the aver-

age displacements between the constituents. The assumption, plus the approximate

nature of the assumed constituent displacements, calls into question the accuracy

of this approach. However, as presented in this document and in other literature,

the shear-lag formulation is suitable for modeling polymer-based, metal matrix and

ceramic matrix composites under a number of loading conditions [133].

A.6.2 Fatigue Loading. The fatigue behavior of ceramic matrix composites

can be characterized by four predominate features: modulus, stress-strain hystere-

sis, strain ratchetting, and S-N behavior. Each of these are useful for defining the

material behavior. Unfortunately, due to the variability in material batches, testing

methods, and stochastic failure processes, the salient features/empirical trends may

vary, sometimes significantly, between the data reported in the literature. More-

over, due to the uncertainties in the failure mechanism, the observed phenomenon
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can be difficult to explain. This section briefly summarizes some of the observa-

tions/discrepancies reported for the four characteristics: modulus, stress-strain hys-

teresis, strain ratchetting, and S-N behavior.

A.6.2.1 Modulus. During fatigue loadings where the applied stress is

greater than the critical composite stress (i.e. a > a,), the laminate's modulus, Ec,

decreases due to the formation of damages [76,210]. The damages progress on a cycle

by cycle basis in which the modulus approaches a magnitude of vf Ef as the matrix

cracks and the fibers debond. Once the matrix cracks saturate, the degradation

in the elastic modulus is a result of the interface debonding which continues due

to Poisson's effects and changes in the stress intensity factor at the debond crack

tip [184]. Note also that E, may decrease below the stated limit, e.g. vf(1 - D)Ef,

as fibers fracture and pull-out. The reduction in the modulus is a function of the

loading environmentt, interface sheart and the laminate's composition. Zawada et

al observed a gradual degradation in the modulus over the first 10,000 cycles [210].

Pryce and Smith reported a much quicker degradation [153].

With extensive cycling, a slight recovery (- 5 - 10%) in E, may be observed

[153,210]. This could result from an increase in the interface shear, -i(N), due to

long term exposure to the environmental conditions. In particular, the humidity

level is believed to be the main contributor. Also, debris along the interface may

produce some mechanical interlocking which reduces the interface sliding. Finally,

as the matrix cracks and the interface debonds, the fibers are permitted to realign;

perhaps into a stiffer orientation. Note that as the modulus increases, the fiber strain

decreases, and in turn, the interface slip and stress-strain hysteresis also decrease.

Cycling below the critical composite stress can increase the residual strength of the

laminate by decreasing the crack-tip stresses [210].

tMaximum applied stress, atmospheric conditions, temperature, strain rate, loading frequency,

stress ratio, etc. [74, 95,165,190,210].
tThe degradation in ri(N) may be modeled as presented in chapter four or by some alternate

form, e.g. ri(N) = ri.N - ' [54,163].
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A.6.2.2 Stress-Strain Hysteresis. Stress-strain hysteresis results from

frictional sliding along the fiber/matrix interface. The shape of the stress-strain

loop and the width of the loop can both vary during cycling. In general, the shape

of the hysteresis loop is non-linear when the state of interface sliding is changing

(partially bonded) and linear when the constituents are fully sliding (debonded)

[178]. Furthermore, the loop width may remain the same, decrease, or increase with

cycling [100]. All possibilities exist due to the competing nature of the frictional

sliding. For a constant slip distance, the larger the frictional force (i.e. large ri),

the wider the hysteresis loop due to an increase in energy dissipated. However, as

Tr(N) declines, the slip distance also decreases which, in turn, reduces the energy

dissipated and hysteresis. Pryce and Smith observed that for U > a,, the hysteresis

width decreases with cycling, and for a ocr,, the width remains fairly constant over

the fatigue life [153]. Holmes & Cho and Rouby & Reynauld reported increases in

the loop width with cycling [76,163].

A.6.2.3 Strain Ratchetting. Strain ratchetting occurs when fibers

fail and pull-out from the matrix. It has been observed that strain ratchetting is a

time dependent phenomenon due to variations in Tr1t and Ti resulting from oxidation

embrittlement [153]. Furthermore, the fatigue specific damages and time-dependent

matrix cracking which occurs, increases the rate of fiber fracture since the fibers

are forced to carry a greater share of the applied load. In a similar manner, the

slippage process itself may be a catalyst for increases in the matrix crack density, and

ultimately the fiber crack density, due to the surface roughness of the constituents

[153]. Also, additional fiber fractures form as microscopic flaws grow under fatigue

loading and eventually obtain a critical size.

A.6.2.4 S-N Behavior. The fatigue life of a composite is typically

defined as one million cycles. The maximum stress for which the composite does not

fail over the prescribed fatigue life is known as the fatigue limit. For ceramic matrix

A-36



composites, it is generally observed that the fatigue limit is close to the critical

composite stress of the laminate [151,210]. However, based upon some unpublished

work by Holmes,t for long duration cyclic tests (> 10'), the fatigue limit can be

far below, on the order of 40%, a,,. This reinforces the time dependency of failure

in these materials (e.g. oxidation embrittlement). Moreover, the reduction in the

fatigue life at high loading frequency may be a consequence of additional interface

damages caused by large temperature rises.

tUniversity of Michigan, Ann Arbor.
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Appendix B. Theory of Micromechanics

This appendix provides an introduction to the modeling of ceramic matrix com-

posites via the theory of micromechanics. For brevity, unidirectional laminates are

emphasized. Rule-of-mixtures equations are reviewed for the case of an undamaged

laminate, and an introduction to shear-lag theory is presented for when damage

is considered. Also, this appendix includes a review of the solution methodology

employed in the current study.

B.1 Rule-of-Mixtures Theory

Under the geometric constraints outlined in chapter two, the behavior of a

unidirectional laminate can be modeled using a simplified unit-cell consisting of a

single fiber and surrounding matrix. If the composite is void of any damage, the

strain in the constituents is assumed to be equal and to define the composite strain,

i.e.

Ec = Cm= cm. (B.1)

Moreover, the total strain is a combination of the mechanical and thermal strains:

cc= - +} lAT,El

f = f + af AT, (B.2)

Cm r m° + amAT.

The subscripts f, m, 1, 2 and c denote the fiber, matrix, axial direction, transverse

direction, and composite, respectively. The parameter E is Young's modulus; a is

the coefficient of thermal expansion.
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Substituting Eq. (B.2) into Eq. (B.1), it may be shown that

Ef
E(f = -- or + E (a,- of)AT, (3.47)

Erl
amo = Em or + Er(al - act)AT. (3.46)

El (341

Hence, the constituent stresses are assumed to be constant over the length of the

unit-cell as illustrated in Fig. B.1.

Stress

Fiber

Gf.

Matrix

x

- 0-
Fiber matrix

Figure B.1 Constituent stresses, based upon micromechanics theory, for an undam-
aged laminate.

The equilibrium relation may be determined by noting that any applied load,

P, may be expressed as the sum of the loads on the individual constituents, i.e.

P = Pf + P. (B.3)
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From which, equilibrium is determined by dividing by the composite area as illus-

trated below.

P
A,

P Af P Am

A A A.. A

Vf afo + Vm'Mo (B.4)

Furthermore in differentiating Eq. (B.4) with respect to c, it follows that

El v Ef + vmEm (3.4)

since the constituents are assumed linear-elastic. The following relationships also

hold [25].

E2iE Em (3.5)
= + (3.5+)V

vjEfaf + vmEmam (B.5)

a2= vjaf + Vmam (B.6)

G1 { vmGm+(I + vf)Gf (B.7)G12 =G (I + v~f)Gm + vmG$

(a + #mu])(1 + pV3 ) - 3vf m/ 02G 23 = Gm a (B.8)
-I (QVf)(1 + pv') - 3 vfV2 02M

where
_ _ _/ 1 1

- -13 - 4vm 3 -f

3m/Of- a

I + 3  Gm

The parameters Gf and Gm are the shear moduli for the fiber and matrix, respec-

tively. Similarly, vf and v, are the corresponding Poisson's ratios. For the cross-ply
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laminate,
bEa 1 + dEa 2  (B.9)

bE1 + dE2

where b and d are the half-thicknesses of the 0' and 900 plies.

B.2 Introduction to Shear-lag Theory

One-dimensional shear-lag models typically assume that the state of stress in

a bi-material composite can be defined by the normal (axial) stresses in the con-

stituents and the shear stress which develops at the interface of the two materials.

For the system of materials, a and b, shown in Fig. B.2, these correspond to a(07),

crb(71) and ri(rq). Note that the unmodified shear-lag theory is limited to the anal-

G 0q)Constituent 'a' -

Mi(1) Constituent Vb

Figure B.2 Bi-material representative volume element (RVE).

ysis of two constituent systems with uniaxial loadings (e.g. q direction). Further,

equilibrium requires that the following two relations hold.

Va (B1o
V + V 0() + V + V b b(n)  (B.IO)

T-i(7) = T6. d,( ,qr ) = ±&b db(r) (B.11)

where V denotes the constituent volume and 6 is of unit length and depends on

the RVE cross-sectional area. The unit-cell is assumed to span a pair of matrix

cracks. Note that Eqs. (B.10) and (B.11) constitute only two equations for the three

unknown stresses. The final relation is obtained from the shear-lag formulation which

assumes that the rate of stress transfer between the constituents is proportional to
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the average constituent displacements according to Eq. (B.12); where it has been

recognized that the stress transfer rate is also proportional to the interface shear

[Eq. (B.11)].

Ti(?7) = +U-/{ia(r])- 'b(r7)} (B.12)

The sign in Eq. (B.12), ±, is dependent on which entity, a or b, is the main loading

bearing member.

Equation (B.12) represents an additional relation for the analysis; however,

several unknowns are also introduced. In particular, the shear-lag parameter, 1H,

and the constituent displacements, a( 7 ) and ub(?7), must be determined. The latter

requiring the introduction of an assumed set of in-plane constituent shear stresses,

r(7, (). These shears are not to be confused with the interface shear stress, ri(77);

rather r(y, () describes in-plane warping of the constituents. Note however that since

the shear-lag stresses [oj(y]), a,(y) and ri(q)] are based on the average displacements,

cross-sections of the RVE are assumed to remain plane under deformation. The

solution is formulated in this manner to reduce the problem to a single dimension. It

is worth noting that several of the shear-lag models differ only in the assumed form

of the constituent shear stresses, r(77, (). Furthermore, given T(r, (), the average

displacements may be determined from the assumed problem kinematics, e.g.

A T(q,C)/(AG) d( dA (B.13)

where A is the cross-sectional area of the unit-cell under consideration. Equa-

tion (B.13) represents the reduction in the problem to one dimension.

It turns out that in its present form, Eq. (B.12) is not independent of Eq. (B.11)

due to the assumed kinematic relation, and therefore, an insufficient number of

equations still exists to solve the problem. However, in differentiating Eq. (B.12),

the desired solution is obtained. In particular, by differentiating Eq. (B.12) and

employing Eqs. (B.10) and (B.11) and the proper kinematic relations, the following
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relation is obtained.

6a d2oa(?7 ) AlO'a i= 7- {A207 - (Qa - ab)AT} (B.14)drq2

where A1 = 1fI {VaEa + VbEb} / {VbEaEb} and A2 = (V + Vb)/(EbVb). The latter

is recognized as the inverse of the volume fraction of constituent b (i.e. A2 = 1/yb).

Equation (B.14) represents a second-order linear differential equation with constant

coefficients and whose solution yields one of the desired axial stresses. The two

boundary conditions for Eq. (B.14) are dependent on the damage configuration

within the composite. Typical boundary conditions are that the axial stresses must

vanish at the free boundaries (i.e. a matrix crack), and that the interface shear

vanishes along planes of symmetry. Finally, Eqs. (B.10), (B.11), (B.12) and (B.14)

constitute four equations in four unknowns: a(77), ab(77), ri(r) and H. Hence, the

state of stress is now completely defined.

Under the current formulation, the two-dimensional constituentt shear stresses

are assumed to be of the form shown in Eq. (B.15).

J 6 1 (C + 62)" Ti() for constituent 'a'

63 . (64/C - C + 65) . ri(q) for constituent 'b'

The constants 6i are dependent on the initial laminate geometry. Moreover, the

separation of variables is required for Eq. (B.13). The final stresses for the unidi-

rectional laminate are given in Eq. (B.16). These are the same as presented by Kuo

and Chou [106], but have been modified to account for fiber fracture. For brevity

the stresses in the cross-ply laminate are not shown, but can be found in chapter

tNote that the term constitueni is used loosely in this text since it refers to not only the fiber
and matrix of the unidirectional laminate, but also the 90' ply and the 0' ply of the cross-ply
laminate. Refer to chapter three for more detail.
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three.

afo + 9 cosh (fir) / cosh (P3 [L/2 - d]) bonded region

(. Vf(1 2 (L/2 - jxj) debonded regionvf (1- D) rf
m Vf { cosh (flr1) / cosh (P [L/2 - d])} bonded region

av 27 (L/2 - II) debonded region
V m r f

- sinh (fqir) / cosh (/3 [L/2 - d]) bonded region{i debonded region
(B. 16)

where
a= v2(1 d) G (B. 17)

f(1- D)rf

The variable /3 is the shear-lag constant [106]; L is the crack spacing; d is the debond

length, and Tr is the frictional shear resistance in regions of fiber/matrix debonding.

ri is assumed constant.

From the above development, the composite stress-strain response is com-

pletely described by the Hookean relation given in Eq. (B.18)

or = El c, (B.18)

where a is the applied stress and c, is the strain of the composite. Since the applied

load is assumed to be aligned with the fibers in this case, E1 represents the laminate

stiffness, i.e. E1 = E,. In addition, for an intact fiber, the composite strain is defined

as the average strain in the fiber. Hence,

6C = E-IL o f(x) dx + (Qf - c )AT (3.6)

where x is the axial coordinate defined along the fiber axis.
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B.3 Methodology

The methodology employed in the current study for modeling the CMC behav-

ior under quasi-static and fatigue loadings is illustrated in Figs. B.3 and B.4. The

solution algorithm is detailed in Fig. B.3 while Fig. B.4 provides a general overview

of the mechanisms which must be considered in the fatigue analysis. Note that both

rule-of-mixtures and shear-lag formulae are employed for analysis purposes.

Given GC, Find Ucr m

l • Apply 0

Rule-of-Mixtures modified
Shear-Lag

Generate response

Figure B.3 Flow chart outlining the current approach used in generating the stress-
strain response for a ceramic matrix composite in which matrix crack-
ing, interface debonding and fiber fracture are considered.
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The fatigue behavior of a ceramic composite can be characterized by several

salient features: stress-strain hysteresis, modulus degradation, strain ratchetting,

and S-N behavior. Each of these are illustrated in Fig. 2.5. Stress-strain hystere-

sis refers to the size (e.g. width) and shape of the loading and unloading lami-

nate response which (numerically) describes a closed loop within the stress-strain

response (Fig. 2.5). The hysteresis is caused primarily by frictional sliding of the

fiber/matrix constituents in regions where the interface has debonded and, moreover,

the area enclosed by the loop represents the energy dissipated during the fatigue cy-

cle. Hence, the hysteresis loop is a good indicator for the magnitude of the interface

shear stress [100]. Similarly, decreases in the composite modulus are representative of

the formation of damages within the laminate microstructure. In particular, strain

ratchetting, which denotes the continuous evolution in residual/permanent strain, ep,

results primarily from permanent slip of broken fibers. Finally, S-N plots define the

expected fatigue life (and fatigue limit) of a given composite and are generated by

plotting the maximum applied stress versus the maximum number of loading cycles

to laminate failure. As is common throughout the literature, the fatigue limit is

defined as the maximum allowable applied stress for which the laminate does not

fail over a standard fatigue life, defined here as one-million cycles.

Figure B.4 illustrates the analysis methodology employed in the current analy-

sis for modeling the fatigue behavior of the cross-ply laminates. The analysis calls for

a priori knowledge of the constituent and laminate properties, as well as the loading

conditions. Moreover, the principle mechanism contributing to the fatigue response

must be included in the analysis. For the present study, the major contributors to

the fatigue behavior are assumed to include the formation of damages (matrix crack-

ing, interface debonding, and fiber fracture); frictional slip along the interface; the

degradation in interface shear, and fiber pull-out which is the primary mechanism for

strain ratchetting. In addition to these phenomena, a means for predicting laminate

failure is required.
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As before, ocr and 7n must first be obtained from a monotonic tensile test before

the fatigue behavior can be determined. In addition, the degradation of interface

shear, ri(N), during fatigue is required. Given c,, 752 and i(N), the stress-strain

hysteresis and fatigue life may be predicted. Alternatively, 7i(N) may be estimated

by fitting empirical ep, hysteresis, and/or S-N data. This is desirable since the

degradation in interface shear is difficult to measure experimentally, and therefore,

such empirical data are unavailable at this time. Under the current analysis, the

laminate is assumed to fail when the energy available for pulling the fibers out of

the matrix, Up, exceeds the work required to do so, Wp.
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Appendix C. Origin of Hysteresis

During unloading and subsequent reloading, hysteresis in the stress-strain re-

lationship will develop as a result of energy dissipated through frictional sliding

between the constituents of ceramic composites [47,149,189]. Hysteresis developing

from a completely debonded interface in the shear-lag formulation has been well

documented [153]. For a partially debonded interface in the present shear-lag for-

mulation, the analysis becomes slightly more complicated. This appendix develops

the unloading (and subsequent reloading) behavior of a partially debonded interface

based upon the shear-lag assumptions. Before presenting the analysis for the par-

tially debonded interface, the same is presented for a completely debonded interface

as a first step [153].

C.1 Completely debonded interface

The mechanics of frictional slip for a completely debonded interface is well

described by Pryce and Smith [153]. The fiber is forced to carry the entire load

along the plane of the matrix crack. Within this plane, the fiber obtains a maximum

stress value of ojv/. Away from the crack plane, the additional load is transferred

back into the matrix via interface shear stresses. Since the interface shear is assumed

constant, the rate of transfer of stresses between constituents also remains constant.

Provided the crack spacing .is sufficient, the stress transfer will take place over a

distance x' at which point the constituent stresses will return to their original rule-

of-mixture values [153]. Since the rate of transfer of stresses is directly proportional

to Ti, x' may be determined. Pryce and Smith found x' to be

- El 1 - f(C. 1)

where ath is the residual thermal stress in the fiber. Further, it may be shown from

simple strength of material calculations that if the matrix is to remain stress free
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along the plane of the matrix crack, then for any applied load, frictional sliding, i.e.

relative displacement of points on opposite sides of the interface, will occur over the

entire distance x'. Note that slip will not occur in reality until the interface shear

stress exceeds some limiting or threshold value. However, in the shear-lag model

the problem has been reduced to one dimension (i.e. constituent's shear stresses are

neglected), and if the normal matrix stress is forced to be zero at the boundary, slip

will occur for any stress value.

Upon unloading the interface shear now resists slip in the opposite direction

(counterslip). Such slip again starts near the plane of the matrix crack where the

constituent interactions first occur, and results mathematically in a sign change in

ri over a given distance y (Fig. C.1). Further the maximum distance over which

counterslip may occur is exactly one-half of the original slip distance (i.e. Ymax =

X'/2). This is a common phenomenon associated with frictional joints [132]. The

magnitude of the shear stress resisting the counterslip is often assumed equal to the

original shear stress [8,153]. Realistically, this will not be the case especially when

one considers Poisson's effects. Whichever is the case, as long as the magnitude of the

shear is known, y may be easily determined since both the stresses at the boundaries

and the rate of transfer of stress are known. Based upon Pryce and Smith's work,

the resulting form is as shown below.

y =2x-i [v -1o El o- (C.2)

Equation (C.2) assumes that the magnitude of the shear stresses are equal in areas

of slip and counterslip.

Upon reloading slip must once again occur near the crack plane to ensure a

stress free boundary in the matrix. This slip is assumed to occur over a distance z

which is given by Eq. (C.3). Figure C.1 illustrates typical fiber stress distributions

at the peak applied stress, a7max; after unloading to 7 l (< Umax), and after reloading
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No Slip Slip Region I' : Initial loading

Fiber to m
Stress

X

Reload fromto

Unload from (Ymax
to

L/2 X

Figure C.1 Fiber stress distributions for a completely debonded interface with fric-
tional sliding during loading (ax), unloading (ul) and subsequent
reloading (9 2).

to a2 (< 'max, > Orl). The main feature, to be noted, is that slip (counterslip) will

occur over a given distance required to satisfy equilibrium and continuity of stresses

and that the remaining portion simply unloads (or reloads) elastically.

z y 1{ X rf v_ Em th]

S= y - E 2
T E a1 f  (C.3)

C.2 Partially debonded interface

The above argument is also applicable to a partially debonded interface. How-

ever due to the shear within the bonded region, the relative magnitude of slip (coun-

terslip) will differ from the previous case. Figure C.2 shows the constituent normal

stresses and interface shear stresses for a partially debonded interface. Note that
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within the debonded region (x C [L/2 - d, L/2]) the shear stress is constant and

yields a linear transfer of constituent stresses.

Stress (T/vf

Fiber

cGfo

................ (Tm o
M/.... Shear

Matrix ' "
I I'

/ I- - - S ' oO , ]. •

Matrix L/2 X

Fibe i-
Matrix crack D~eond

Figure C.2 Constituent stress distributions near a matrix crack for a partially
debonded interface. The interface shear stress, ri(x), is also shown.

Clearly, based upon the formulation used in the development of the debond

length with Ti < Tut, slip extends throughout the entire debonded region. Upon

unloading from a peak value of Tm , counterslip will again occur near the plane of

the matrix crack over a distance y. To simply use the existing shear-lag equations

at the new stress level (o < Umax) would incorrectly assume that a portion of the

model within the bonded region has not unloaded elastically {m(Xo) -$S(x,); x, E

[0, L/2 - d]} while unloading in surrounding regions has been elastic. In theory, what

must occur is that there will be a reversal of slip near the plane of the matrix crack

and the remaining areas must unload elastically. However, due to the large shear
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stresses within the bonded region, counterslip may occur over the entire debond

length. But since slip cannot occur in the bonded region, the maximum counter slip

distance is equal to the debond length, i.e. yax = d.

Upon reloading (to a 2 ), slip again occurs near the crack plane over a distance

z. Three cases need to be considered here. For y < d, z is determined by ensuring Tj

evaluated at x = L/2 - d equals r-lit. For y = d and z < d, z is again determined such

that reloading within the bonded region is elastic and where Iri(x)I at x = L/2 - d

is still constant but now < rt. The resulting fiber stresses may be determined by

letting y = d in the previous equations. For y > d and z > d, the original shear-lag

equations are again valid.

C.2.1 Unidirectional Laminate. Since -i has been assumed constant in the

present analysis, as is typical of most studies [8,106,113], the extent of interface slip

during loading and unloading may be determined analytically [132,153,174]. For the

unloading portion of the cycle, the counterslip distance y may be calculated from

Eq. (3.45) by noting that the magnitude of the interface shear, i(x), at x = L/2 - d

remains equal to T-lt since the deformations within the bonded region are know to

be elastic. The analysis results in the following expression for y.

1d 1 v, amo+ 1 Talt (C.4)
2 1 2 vf Ti /tanh/(L/2-d) T-i

Furthermore, the stresses within the fiber may be shown to be defined by the fol-

lowing set of equations.

Ol r + cosh(ox) vM 2, (d_- 2y) X C 0, L-d (C. 5)
af(x) =f ± +cosh[ (L/2 - d)] ( Vr r) [

-f(X) - +- x + 2y - x [ - d, -L y] (C.6)

ao(x) = v- +  -y (C.7)
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Since slip cannot occur within the bonded region, the maximum counterslip distance

is equal to the debond length, i.e. Ymax = d.

Upon reloading, slip again occurs near the crack plane; this time over a distance

z. Three cases need to be considered here. For y < d, z is again determined by

ensuring wi(x) evaluated at x = L/2 - d equals r, ,t. This results in the following.

i1, 1 vm o 1+ - (C.8)
2 2f-- - i tanh/-(L/2-d) 7 J

In addition, the fiber stress for this case is given by Eqs. (C.9) through (C.12).

cf W =(o) + + [2(y - z) -d] x o, -d]
afx)~f ±cosh[t3(L/2 - d) f 7 }f L 2

(C.9)
-f() +- x +2(y -z)-- z [L - d, - y (C. 10)

Vf f rf\ 2/ 2~y4z (2af 2X) =-' 2z - x x C - - C.1

a 2r( ~ F~

af (x) - L _- L-x x [L -z,- ]  (C.12)

For y = d and z < d, the deformations within the bonded region is still elastic;

however, ]v(x = L/2 - d)] < rzIt. The maximum existing shear may be determined

from Eq. (C.4) by letting y = d and solving for rlt. Moreover, the resulting fiber

stresses may be determined from Eqs. (C.9) through (C.12) with y = d. Figure C.3

represents a sequence of normal (axial) fiber stress distributions during unloading

and reloading for both Ymax < d and ymax = d. Note that in both cases, hysteresis

will develop during unloading and reloading.

For y > d and z > d, the original shear-lag equations [Eq. (3.45)] are again

valid, and more importantly the state of stress and composite damage is exactly the

same as if the unloading never occurred. This is why under the assumed conditions of

repeated loading, the stress-strain response of coupons cycled to the same maximum
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unloading response
1000 --- reloading response

800
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2x/L

(a)

600
unloading response

500 " reloading response

40.0 0.5 09 .510S4ooL

b300

v) 2004

10,100

-100i- - - -
0.80 0.85 0.90 0.95 1.00

2x/L(b)
Figure C.3 A time history representation of the normal fiber stress during un-

loading and subsequent reloading of a damaged composite where x E
[0, L/2]. In the above figures, matrix cracks are assumed to exist at
abscissa values of ±1. Hence, for the figures shown, the fiber stress at
x = 0 has a magnitude equivalent to af.. (a) ymax < d and a = 400,
275, 150 and 0 MPa. (b) Ymax = d and or = 225, 150, 75 and 0 MPa.
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stress remain constant. In addition, the fatigue behavior and fatigue specific damages

cannot be modeled under the present conditions. Eqs. (C.4) and (C.8) are valid under

the assumption that the interface is partially bonded, once the interface debonds fully

(i.e. d = L/2), the analysis must be re-evaluated as follows.

Once the interface completely debonds, the slip distances y and z can be

obtained by ensuring that the constituent displacement remain elastic in regions

where slip has not occurred. Furthermore, for the current shear-lag formulation,

the constituent stresses for the fiber and matrix, 01 (x) and arm(x), are given by

Eqs. (C.13) through (C.16) under the conditions of complete debonding and unload-

ing.

0o(X) + 2-) i (x + 2y - L/2) for x c [0, L/2 - y] (C.13)orSx) v(1 -D) +  f

0(X) +(1" 2D i (L/2 - x) for x E [L/2 - y, L/2] (C.14)
Sv(1-- D) rf

a,"(x) = _f 2ri (x + 2y - L/2) for x C [0, L/2 - y] (C.15)
Vm rf

a.V(x) _ v 2"ri (L/2 - x) for x E [L/2 - y, L/2] (C.16)
Vm r f

Equations (C.17) and (C.18) represent the change in constituent strains for a

partial unloading from lmax to a.

2 E9L jL/2
-y {'(X)l;=. -UA(x)I;x} dx (C.17)

ACiM 2 E L 2 {am'(X)i'=ma - Um(X)I,=, dx (C-18)

Based upon these results, the criterion for determining the slip distance for a com-

pletely debonded interface becomes

ACm - Af = 0. (C.19)
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When considering Eqs. (C.13) through (C.19), y is determined to be

I am, - ) Em Vm rf fo y< /
y 1{"4 ri  E1 vf (1 - D) for y <L/2 (C.20)

L/2 for y > L/2.

The reader may verify that Eq. (C.20) is equivalent to Eq. (C.2). During reloading

of the unit-cell, Eq. (C.19) may once again be applied. This time, the slip distance

z, is found to obey the following equations.

Z 4 { i El vf (1 -D) for z<L/2 (C.21)

L/2 for z > L/2

Hence, Eqs. (C.20) and (C.21) are used when the interface is purely frictional. A

known phenomenon associated with frictional joints is that during unloading, the

maximum counterslip distance is equal to exactly one-half of the original slip distance

[60, 132]. However, for a partially bonded interface, this restriction is no longer

true [174] (reference appendix D). It is somewhat convenient to express the slip

distance in relation to the debond length (e.g. y/d and z/d). Denoting this ratio by

D, it may be shown that for a partially bonded interface,

2vf(1 r3tn[/(/VmU~mrf + Tli )] unloading
2) = 2vf id - ifld tanh[fl(L/2 - d)] )(.13

D 1I _ vm rf + ) relo (3.123)

[ - 2 \ 2vfrid -ri/3dtanh[O(L/2 - d)] reloading.

where Du is 'D at o = ami (unloaded), and for a completely debonded interface,

I ( vmEmrf Umax -0_ unloading
D) V( -2 D l L  

7-i /(3.124)

1 -f D) L -____E-_____min reloading.
2 vf (1- D)E1L r
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Before presenting results for repeated loading conditions, note that Eqs. (C.4)

and (C.8) can be used to approximate the slip distances for a completely debonded

interface. For example, during unloading, Eq. (C.4) can be used to estimate y by

considering the limits as the interface debonds (d --+ L/2) and the interface strength

(which is a function of the bonding energy) vanishes (i,,t -+ 0), i.e.

lim lim d- Vm amo 1 T 7" (C.22)
d-+ L TU'O -2rv f Ti /3tanh P(L/2 - d) Tr J)

or

2 - mo v r

where the constant C is obtained by ensuring y vanishes at a = Ormax. Equa-

tion (C.23) does not (mathematically) follow from Eq. (C.22); however, it does

provide a convenient link between Eqs. (C.4) and (C.20).

C.2.2 Cross-Ply Laminate. The frictional sliding which occurs along the

fiber/matrix interface during cyclic or repeated loading conditions determines in

large part the stress-strain and stress-strain hysteresis behavior of a ceramic matrix

composite. For a cross-ply laminate, the interface debonding and slip within the

0' plies is assumed to be the sole contributor to the hysteresis phenomenon. Fur-

thermore, interface slip occurs between the constituents over the entire debonded

region, and the extent of the slip is governed by the frictional resistance along their

common interface. During unloading, the constituents slip in the opposite direc-

tion over a discrete region, y. As shown in chapter four, the extent of counterslip

may be determined from equilibrium and displacement continuity relations. For the

cross-ply composite, y is found to be
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1 1/  lrl b + d oh( xl=k
yi di- 2-riv f b a b0T(Xt 1 )=) -T (Ax 1 fYi ~{d~ lr [1 b-jd dcosh(ALt/2)

'TA sinh (Axj 1 ) - cosh(5 1 - 0,) sinh (Axtl,=) 1/3 sinh(ql - Or) cosh(ALt/2)

PTi (tanh(ol - Or) + sinh(ol - r)

where Oi = /3 (TL/2 ± di) and j = r (right) if i I (left) or j =/if i -r. Recall

within the cross-ply analysis, the fiber stress is not symmetric and therefore there

exists a left counterslip distance, yj and a right counterslip distance, Yr. The reader

may verify that if a symmetric damage configuration exists within the representative

volume element (e.g. Oi = -0j and xt1  = andif UT(X) -- 0" with d

and or' vanishing then Eq. (C.24) reduces to the unidirectional counterslip distance

[Eq. (C.4)].

During reloading, the frictional resistance will again reverse near the plane of

the matrix crack; this time over a distance z. It may be shown that

yi Yi - 1 (Ib +d (- d- cs (Ax,,=)di =y - -- - YT(%=) - f_
2j [ -ivf k. b b X=} cosh(ALt/2)-0

TA sinh (Axt=, ) - cosh(ol - 0,) sinh (Axt,,=,i
± /3 sinh(ol - Or) cosh(ALt/2)

Tut( 1 1 (C.25)
/3r (tanh(ol - Or) sinh(5 - Or) ) J (

Once again, with the proper assumptions, Eq. (C.25) reduces to the unidirectional

case [Eq. (C.8)]. Given y and z, the fiber stress may be easily obtained, and are
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provided below. During unloading,

22r1(-L/2)} -+2 2y (L/2 + x) for x c [-L/2, -L/2 + y], (C.26)
rf

27
{(-L/2)} + -- (2y, - L/2 - x) for x C [-L/2 -+ y, -L/2 + di], (C.27)

7-f

af (X) = C3 sinh(o~) + c4 coshCox)

+I T' coh-1-i~x a' for x G [-L/2 + di, L/2 - d,], (C.28)
cosh (ALt/2) f

f{(L/2)1 + 2-' (2 y, - L/2 + x) for x E [L/2 - d,, L/2 - yr], (2)

{(L/2) ± +2i (L/2 - x) for x E [L/2 - yr, L/2] (C.30)

where

{(-L/2)} b(1 + D) d ao- do T (Xti) } (C.31)

and
{(L/2)} - i 1 b D) d - d UT xt,=/

{(L2) (I -D) { bd 7  b~T (rvti.=I (C.32)

For the subsequent reloading,

{(-L2-)}- 2T (L/2 + x) for x E [-L/2, -L/2 + zj], (C.33)

{(-L/2)} + 2f (L/2 + x - 2zi) for x C [-L/2 + zi, -L/2 + yj], (C.34)rf
2r

{(-L/2)} + -2i (2{yj - zl} - L/2 - x) for x C [-L/2 + y', -L/2 + d1], (C.35)
rf

of(X) = c3 sinh(/x) + c4 cosh(/x)
Tr cosh (Axt, =)

+ -cosh±(t/2) +. for x C [-L/2 + di, L/2 - d,], (C.36)
cosh (AL/2)-
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{(L/2)}+-- -i (2y - z,} - L/2 + x) for x C [L/2 - d,, L/2 - yr], (C.37)

2-r-
{(L/2)} + --f (L/2 - 2zr - x) for x C [L/2 - Yr, L/2 - Zr], (C.38)

{(L /2) } + i (L/2 - x) for x C [L/2 - Zr, L/2]. (C.39)
rf

For repeated loading, once the composite is reloaded to u,ax, both y and z vanish.

Hence, the predicted strain at a = mar, is independent of the loading history. Ad-

ditional damage mechanisms need to be considered if the material response. under

fatigue loading is to be modeled.

If the fiber/matrix interface is completely debonded then the slip distances y

and z may again be determined by ensuring that the constituent displacements are

elastic in regions where slip has not occurred, i.e.

Ac, - Aef= 0 (C.19)

and where Eqs. (C.17) and (C.18) are still applicable. The axial fiber stress is shown

below in Eqs. (C.40) through (C.49) for the unloading and reloading conditions.

The axial matrix stress is determined from equilibrium [Eqs. (3.52) and (3.53)]. The

axial fiber stress in the 0' ply of a cross-ply laminate with a fully debonded interface

during unloading is

cff(x) = {(-L/2)} + --i (L/2 + x) for x E [-L/2, -L/2 + ye], (C.40)

(x) =( L + (2y - L/2 - x) for x E [-L/2 + Yi, 0], (C.41)a/() -{-/2)J + -(y 1 )X~LI j ~.-1

2T

acf(x) ={(L/2)} + - i (x + 2y, - L/2) for x E [0, L/2 - y], (C.42)
27-i

f(x) {(L/2)} +-- (L/2 - x) for x C [L/2 - yr, L/2], (C.43)
r-
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and during reloading, these stresses become

Oj (x) 1{(-L/2)} - i (L/2 + x) for x c I-L/2, -L/2 + zj, (C.44)

(x) {1(-L/2)} + Ti (L/2 - 2zi + x) for x C [-L/2 + zi, -L/2 + yi] ,
rf

(C.45)
(x) = {(-L/2)} + - (2 (y - zi) - L/2 - x) for x c [-L/2 + yi, 0],

(C.46)

(x) ={(L/2)} + 2i (2 (y, - Zr) - L/2 + x) for x c [0, L/2 - y], (C.47)

(x) =(L/2) + 2Ti (L/2 - 2zr - x) for x C [L/2 - yr, L/2 + Zr], (C.48)
rf

O (x) = {(L-/2)} -2T (L/2 - x) for x C [L/2- Zr, L/2]. (C.49)
rf
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Appendix D. Sliding Along Frictional and Non-Frictional Interfaces

The following presentation illustrates that for a purely frictional interface in

which the shear stress is assumed constant, the maximum counterslip distance which

may develop during unloading is exactly one-half of the original slip distance. For

non-frictional interfaces, the counterslip distance may be larger. Note that the devel-

opment presented in this appendix is intended to be neither mathematically rigorous

nor descriptive of the problem mechanics of a composite interface; rather is thought

to be an interesting treatise.

The development assumes that one-quarter of the representative volume ele-

ment can be modeled as an infinite sequence of frictional blocks and linear springs

(Fig. D.1). The lower series of blocks in Fig. D.1 represent the fiber region. These

blocks are numbered 1,2... n. Similarly the upper blocks represent the matrix and

are numbered n + 1, n + 2... 2n - 1. The spring stiffnesses are A and B for the

matrix and fiber respectively. The shear stresses which develop along the interface

for each pair of blocks (matrix and fiber) are denoted T1, -r2... Tn-. Relative dis-

placements (il, ;2 ... X2 - 1) are given by (fixed) local coordinates (X1,X2"." X2n-l).

From symmetry, Xl, X +l and r1 are all zero. In addition, the composite interface is

assumed to be completely debonded.

As the applied load, F, is increased from zero, individual pairs of blocks will

displace with no relative slip initially between them. For this condition, the interface

shear stresses are given by

0 for k=1,2...n-2 (D.1)
KF for k= n-1

where K = A/(A + B). Eventually r-I will exceed the ultimate frictional resistance

of the blocks, Tult. At this point, blocks n - 1 and 2n - 1 slip and the shear stresses
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0 for k 1,2 ... n-43

7-k KF - 2r,, for k n -3 (D.3)

ru for k~n-2,n-1

and so on.
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The corresponding block displacements are given by the following:

0

[ --
i=2

X11 (n - 4)F - (n - 5) 2 r- (n-)m4- . 2 3 - T2

B[n2F(3 E T - (n -4)Th-.-T-~

i=n-4

1-

X n -3 -1 (n - -3 )F - (n - 4 ) -i - (n - 5 )7-n - 4 .. . . . 2 7 3 - - 7-2

t.-2 
i=n--3

n-1
)1 F (n 3) 7i -i(n - 2T3- 72

~j(n-3)F -45-

i=n-2

-1

i=2

; 2n-3

x2-2 (n -4) r + (n - 5)T4 + ''+ 2T3 + 7 2
i=n-3

Xt2n-1 n-1

i=n-2

[(n - 2),Tn- 1 +-(n - 3r + + ,3+r

In order to ensure that maximum slip and counterslip occur, a load sufficient to
causeT2 = r~Tt will be applied. That is, at the maximum applied load, F,,a,, all but

the last two pair of blocks (1 & n + 1 and 2 & n + 2) are assumed to slip. Further,

blocks 1 & n + 1 can never slip and for any load greater than Fmax, blocks 2 & n + 2

will slip. This requires Fmax = (n - 2)r-1I/K. Now define, yi = max -xi where Xjmax

is the maximum displacement for the ith block (i.e. displacement at Fma,). Let gimax

denote Ximax - " evaluated at zero load. Further note that maximum counterslip

will occur between blocks n - 1 and 2n - 1. Let 0 represent the (maximum) ratio of

the final slip distance (ie. at zero load) over the original slip distance (ie. at Fma,,)
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for these blocks. That is

original slip distance - counterslip distance
original slip distance (D.4)

or
S -max - Yn - (2nmaz - /2nlmax)

Xn lmax - X2n lmax (D.5)

Substituting in the proper displacements, it can be shown that

2(n-1) n/2-1Ek- j
k=n/2 j=(D.6)

S(n - 2)(n - 3) + K
Z= - (BK)2

For K greater than 0.05, the limit of 0 as n --+ * is 1/2. Hence the maximum

reversal of slip is one-half of the original slip distance. As expected, 0 vanishes for

A or B zero. For ceramic matrix composites, K C (0.3, 0.5).

A partially bonded interface may be modeled by restricting slip between a

pair of blocks and allowing the shear to exceed 'rlt. For the special case of n = 6,

K = .32, and r2 = 27ut , V was found to be 1/3. Similarly, with 7 2 = 10Tut,

0 = 0.05 and with 2= 10000rlOOr, 0 = 0.00005. Hence it may be surmised that for a

partially debonded interface 0/ E [0, 1] whereas for a completely debonded interface

7 C [1/2, 1]. Although admittedly not a proof, the preceding analysis has given some

support to the original hypothesis that the maximum counterslip for a completely

debonded interface is exactly one-half of the original slip distance whereas counterslip

may extend over the entire slip distance for a partially debonded interface.
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Appendix E. Critical Matrix Strain Energy (CMSE) Failure

Criterion

This appendix examines, in detail, the critical matrix strain energy (CMSE)

criterion used within the present study to determine the evolution of matrix cracking

in ceramic matrix composites as initially presented in chapter three. In summary,

the instantaneous crack spacing, L, is determined by ensuring that the matrix strain

energy remains constant once it obtains some critical value. Mathematically, this

criterion is represented by Eq. (3.117) where the left hand side is the instantaneous

matrix strain energy; Ucm is the critical matrix strain energy, and ur, is the critical

composite stress.

Un + Um(L) = Urm for all oq > a, (3.117)

Under the current analysis, the initial crack spacing, Linit, must be estimated by

means other than Eq. (3.117) since for a = a, multiple solutions exists. In fact,

computationally, an infinite number of solutions exists. As such, a technique for

estimating Linit is presented in this appendix. Also, a detailed discussion of how the

matrix strain energy varies with loading; interface debonding and matrix cracking is

provided. In particular, several matrix strain energy versus crack density plots are

presented. These plots portray a unique representation for the CMSE criterion in

which bounding limits for the crack density and expected trends in the predicted

crack density evolution can be obtained. Following this presentation, the CMSE cri-

terion is compared with more traditional fracture mechanics approaches. Advantages

and limitations of both techniques are provided. In the final section, the models sen-

sitivity to several material parameters (e.g. Oa, Ti and r it) is investigated. First,

however, an introduction to the CMSE criterion is presented.
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E.1 Development of the Critical Matrix Strain Energy

In previous analytical studies, two failure criteria for predicting matrix crack-

ing have been widely used: maximum stress (or strain) theories [28, 37, 113], and

classical fracture mechanics approaches [20,130,196]. The latter includes both the

energy balance formulation as originally proposed by ACK [8], and the classical stress

intensity factor approach [127]. Although the simplicity of the maximum stress cri-

terion is appealing, it typically results in rapid saturation of matrix cracking with

small increases in loading. That is, the evolution of matrix cracking occurs over a

very narrow stress range. This results in a "stepped" stress-strain response which is

not seen in experiments of CMCs [193].

Classical fracture mechanics approaches have yielded an extensive amount of

information on the mechanics of matrix cracking. These may be used to determine

closed-form solutions for the matrix crack spacing [20,179,201]. In addition, several of

these approaches provide lower bounds for the initial matrix cracking stress as well as

estimates for the saturated crack spacings (i.e. upper bounds) [8,20,127,130,179,196].

One approach presented by Weitsman and Zhu [201] employs a matrix cracking

criterion analogous to Budiansky et al [20] to determine the crack densities for a unit-

cell similar to the one used in the present study (Fig. 3.7). Their analysis involves

comparison of the energies associated with two damage configurations ("state I" and

"state II", Fig. E.1), under constant stress, and assumes the additional matrix cracks

(state II versus state I) develop once the available energy (shown as shaded region

in Fig. E.1) is sufficient for the crack formation. The crack density of state II is

assumed twice that of state I.

With the current shear-lag formulation, this cracking criterion is represented

by Eq. (E.1).

(W - U)i = (W - U)II + AAg' + AAdbg'd (E.1)
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State I State HG

L Lia,1 GI

Figure E.1 Matrix cracking criterion based upon a classical fracture mechanics
approach.

where W and U are the work and energy terms appropriate to the assumed damage

laminates, and the areas associated with the newly formed matrix cracks and debonds

are denoted by AAm and AAdb, respectively. The terms g' and gdb are the critical

strain energy release rates for matrix cracking and debonding, respectively.

Note that the work term (W) includes both the work of the external trac-

tions (WT) and the work of the frictional forces along any debonded regions (Wfr)

[Eq. (E.2)].

W = WT- Wfr (E.2)

or more specifically,

W = 01C 4vf -'i fL/2 -i()d.(.)S:; 7-I! r(x)dx. (E.3)
vm vmrfLH ILn/2-d~ i x

Additionally, the total strain energy (U) includes components from the fiber (Uf),

matrix (Urn) and (bonded) interface (Ui) [Eq. (E.4)].

V = Uf +Um + U (E.4)
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For the present shear-lag model, these energies are

uv +L/2{ 2, + r i2(x) dx. (E.5)L = 0 v,,E s  . rs v,,

Finally, note that from Eq. (E.1), the critical energy release rates gc and gdb are

required to predict the instantaneous crack spacing, L. Unfortunately, some uncer-

tainty regarding the magnitude of these parameters for CMCs exists [37]. Estimates

for gc range from the monolithic (matrix) value to far less [37,201]. The fracture

energy associated with debonding is even more difficult to quantify.

Weitsman and Zhu [201] considered several values of gc ranging from 44 N/m

to 5 N/m in their analysis of a unidirectional laminate of a CMC system, silicon

carbide fibers reinforced in a calcium-aluminosilicate matrix (SiC/CAS). In addition,

they assumed that the fiber/matrix interface was not bonded (gdb = 0.0). In the

present study, the same CMC system is investigated and the critical energy release

rate for matrix cracking (gc) is initially assumed to range from 50 to 20 N/m. 50

N/m is the measured value for unreinforced CAS and the value of 20 N/m is based

upon work by Curtin [37]. As in the previous study [201], no toughness is associated

with the fiber/matrix interface (i.e. gdb = 0.0).

The stress-strain and crack density versus applied stress response for the unidi-

rectional SiC/CAS laminate are shown in Figs. E.2 and E.3 for several values of gc.

These results are computed from the present shear-lag formulation and the cracking

criterion in Eq. (E.1). Note that in order to compare this criterion of matrix cracking

[Eq. (E.1)] with empirical data, as well as the proposed approach, Eq. (E.1) is imple-

mented in the analysis at a = 200 MPa with an initial crack density of 0.747 1/rm.

The stress level of 200 MPa corresponds to the laminate's proportional limit, ac,

and the crack density value of 0.747 l/rm is based upon experimental data at this

load level [103]. Weitsman and Zhu employed an initial crack spacing of 30,000 rj at
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zero load. However, under the present study, the composite is assumed undamaged

for stresses below the proportional limit.

400

350

300

250

200 A experimental values [103]

•---- present CFM: 50 N/m
150 V present CFM: 40 N/m

100 - -- - present CFM: 30 N/m

A -O---- present CFM: 20 N/m
50 4' present CMSE

0 1 , , 1 , , . . . . . , . . .. , I .
0.000 0.002 0.004 0.006 0.008

Strain (m/m)

Figure E.2 Stress-strain response of a unidirectional SiC/CAS laminate. Experi-
mental data are from reference 103. Predicted results determined using
the current micromechanics model and a classical fracture mechanics
(CFM) cracking criterion with g' = 50, 40, 30, and 20 N/m and the
critical matrix strain energy (CMSE) criterion.

As illustrated in Fig. E.3, little matrix cracking is predicted with a critical en-

ergy release rate, g', of 50 N/r. More specifically, the failure criterion [Eq. (E.1)]

is only satisfied once before the ultimate strength of the composite (425 MPa)

is reached; thus allowing the crack density to double from 0.747 to 1.494 1/mm

(Fig. E.3). The limited matrix cracking causes the predicted stress-strain response

to be a fairly linear relationship, as expected (Fig. E.2). On the other hand, for

g'=20 N/m, extensive matrix cracking is predicted. However, as in the case of

maximum stress theory [113], the evolution of the matrix cracks occurs over a nar-

row stress range (Fig. E.3), and results in a stepped stress-strain response (Fig. E.2).
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Figure E.3 Crack density versus applied stress for a unidirectional SiC/CAS lami-
nate. Experimental data are from reference 103. Predicted results de-
termined using the current micromechanics model and a classical frac-
ture mechanics (CFM) cracking criterion with g' = 50, 40, 30, and 20
N/m and the critical matrix strain energy (CMSE) criterion.

The range over which crack densities are predicted is greater for g' = 30 and 40 N/rn

than in the other cases (g' = 20 and 50 N/m); however, the continuous progression

of damage as observed in experiments is not captured with this damage criterion of

matrix cracking (Figs. E.2 and E.3).

The analytical results in Figs. E.2 and E.3 may be improved if other factors (e.g.

flaw size, crack location and environmental effects) are considered [179]. However,

consideration of these factors further complicates the modeling process especially

for fatigue involving thousands or millions of cycles. Therefore within the scope of

the present study, where a simplified matrix cracking criterion is sought for both

monotonic and cycling loading conditions, an alternate solution is desired.
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The fracture mechanics solutions shown in Figs. E.2 and E.3 are generated

under the assumption that the crack density doubles each time the failure criteria

[Eq. (E.1)] is satisfied (i.e. LI/LI = 2) [201]. In order to examine the effect of this

assumption on the development of crack densities, the previous analysis [201] may

be modified to consider a more continuous progression of crack growth by allowing

the ratio Li/L11 to be arbitrary. To avoid violating the steady-state assumptions of

the continuum approach [20,127], "state I" is assumed to remain fixed at a reference

state chosen in the present study at the critical composite stress, 0', (Fig. E.4).

With this modification, Eq. (E.1) becomes

(W - U)"r = (W- U)11 + AA..gc + AAdbgb. (E.6)

This approach is computationally less efficient since the external work in Eq. (E.6)

State I State II

Critical State (cr)

.....................

Lcr L cr

Figure E.4 Incremental crack growth model.

must be determined numerically. Additionally, this approach may initially violate the

assumptions of the continuum approach if LII -_ L,, [127]. However, given an initial

damage configuration (L, d) at a,, and the appropriate critical strain energy release

rates (gn, g5b), the matrix crack spacing may be determined analytically at any stress
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level from Eq. (E.6). Crack density and stress-strain solutions are determined in this

manner; however, no improvement over the previous analysis [201] is found. The

progression of matrix cracking is again found to occur over a very narrow stress range

which results in a stepped stress-strain response as is observed with the previous

cracking criterion [Eq. (E.1), Fig. E.2].

With only limited success from the fracture mechanics approach [Eqs. (E. 1) and

(E.6)], empirical crack density data is next used to examine how the work and energy

terms associated with the external work, frictional dissipation, matrix cracking and

interface debonding [Eqs. (E.2) and (E.4)] vary during loading with the current shear-

lag formulation. Such data are useful in understanding how energy is dissipated and

redistributed between the constituents during the formation of damage. Further, the

non-dimensional quantities represent a convenient way of monitoring these variations

by normalizing the instantaneous value by their magnitude at the critical stress, a7cr.

These parameters, WT/WcrT, Wfr/WcrfjrI Um/Ucrm, Uf/Ucrf, and Ui/Ucri, are plotted

as functions of the applied stress for a SiC/CAS composite in Fig. E.5. The results

in this figure are generated using empirical crack density data from reference 86. It

is interesting to note that in Fig. E.5 the normalized matrix strain energy, Um'/U.m,

remains fairly constant throughout the loading process once damage initiates (i.e.

a > r ). Readers should keep in mind that there are several factors which could

influence this variation of Um/Ucrm, such as scatter in empirical matrix crack density,

fiber/matrix debonding, etc. Underestimating the extent of debonding will cause the

magnitude of Um/Ucr.m to be overestimated, or vice versa.

Based upon the above findings, a simple matrix cracking criterion is proposed

which assumes that for any loading beyond the critical stress, the matrix strain en-

ergy remains constant to a critical value [174,175]. This damage criterion is referred

to as the critical matrix strain energy (CMSE) approach, and has proved successful

in modeling both the nonlinear laminate stress-strain response, as well as the con-

tinuous progression in matrix cracking [174,175]. In general, the CMSE criterion
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Figure E.5 Variations in the work and energy terms due to microstructural
damages.

states that matrix cracking at any stress level o; with the average crack spacing of

L and having a fiber/matrix debond length d (Fig. 3.7) will occur when the matrix

strain energy is equal to its critical value, Ucrm, i.e.

Un0 + Um(L) = Ucrm. (3.117)

The critical matrix strain energy, Urm, is defined as the strain energy in the matrix

at the critical composite stress, Oar.

In Eq. (3.117), Uo is the matrix strain energy which would exist if the com-

posite was undamaged, i.e.

2 m Em' (E.7)
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and the term Um.(L) accounts for the decline in the matrix strain energy due to

the presence of the microstructural damages. Also note that since the matrix strain

energy is defined by Eq. (E.8), the left hand side of Eq. (3.117) can be determined

using Eqs. (3.45) and (E.8).

U 1 L/2 a2(x) dx dAm (E.8)Em
2E, JAm -L/2

Performing the math, the instantaneous matrix strain energy is found to be

Urn- Am {(H + 4/3d/3) (T-ivfd) 2 + (O(L/2 - d) + H/4 - 2G).
Vm 2 rf 2/Em,

(vmrfamo) 2 - d rfvmvfrioam(H - 4G)} (E.9)

where G = tanh [/3(L/2 - d)] and

H =3(L - 2d) + sinh[3(L - 2d)]
cosh [O(L/2 - d)]2  (E.10)

An important computational note is that as /3L --+ c, G --* 1 and H -* 2. Fur-

thermore, as d -* L/2, both G and H vanish. Also note that for the current CMSE

criterion, the volumetric matrix strain energy is considered rather than the matrix

strain energy density, i.e. per unit volume, as in the previous case [201].

Under the CMSE criterion, by letting Um in Eq. (E.9) equal U,,., the average

crack spacing can be determined for any applied stress. However because of the

non-linear nature of Eq. (E.9), L is determined iteratively. In particular, at each a,

an initial guess for the crack spacing is made according to

Ln+1 = L. - (L -_ - Ln). (E.11)
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After the initial guess, if Eq. (3.117) is not satisfied, the solution is updated itera-

tively, with index i, until the criterion is satisfied [Eq. (E.12)].

Lj+j =Li+Vi(UmU-Ucrm) (E.12)

where V is a dynamic variable tuned to speed the rate of convergence.

Accounting for matrix failure in this manner allows for a more accurate repre-

sentation of the average instantaneous crack spacing as compared to other existing

(analytical) failure criteria. For example, consider the evolution of matrix cracking

and the representative models shown in Fig. E.6. Since no restriction is placed on

_ _ _ _ _L/1.15

< L/3.2

Composite Unit-cell

Figure E.6 Unit-cell representation of the average matrix crack spacing as predicted
by the CMSE criterion.

the location where new matrix cracks must form under the CMSE approach, an infi-
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nite number of crack configurations are possible. On the other hand, for the criteria

set forth by Daniel et al [40] and Zhu and Weitsman [212], the representative model

decreases in size only discretely since the respective failure criterion assume that the

crack density doubles whenever the criterion is satisfied (Fig. E.7). Therefore, for the

composite damages illustrated in Figs. E.6 and E.7, the present CMSE solution is

able to more accurately model the continuous evolution in matrix cracking (Fig. E.6)

whereas, the other approaches are only able to capture discrete steps (Fig. E.7).

L

> 
L

<_ _ _ _ _ _ _ L/2

Composite Unit-Cell

Figure E.7 Unit-cell representation of the average matrix crack spacing as predicted
by criteria which assume that the crack density doubles whenever the
criteria are satisfied.

Since the volume of the shear-lag model varies with matrix cracking, care

must be taken to ensure that equivalent volumes (Fig. E.1) are considered when

applying Eq. (3.117). The stress-strain and crack density versus applied stress plots
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resulting from the present shear-lag approach using this criterion of matrix cracking

[Eq. (3.117)] are shown in Figs E.2 and E.3, and they are in good agreement with

their experimental counterparts. Further, they show a great improvement over their

counterparts obtained from matrix cracking criterion based on the fracture mechanics

approach, Eq. (E.1). Also the predicted stress-strain relationship does not result in

a stepped response as in the previous analytical case.

Equation (3.117) has proven to be an effective technique for estimating the in-

stantaneous crack density in unidirectional composites. As is evident from Fig. E.3,

results from the CMSE method are in very good agreement with their experimental

counterparts. For this reason, the critical matrix strain energy criterion is employed

also in the analysis of cross-ply laminates. That is, crack propagation in the trans-

verse plies is assumed to be governed by a critical energy as shown by Eq. (3.118).

UT + UT(Lt) = UcIT (3.118)

where UT, is the rule-of-mixtures (transverse ply) strain energy for an undamaged

laminate and UT(Lt) accounts for the transfer of energy upon damage formation.

The critical strain energy is UcrT and is assumed to be a material constant. The

parameter Lt is the average crack spacing of the transverse plies.

Moreover, prior to the development of any damage of the 00 plies, the strain

energy in the 90' plies due to transverse cracking is found to be

UT = dLtE2 T-E-2 1 + 4 [cotsh( ALt) - tanh ( ALt/2) . (E. 13)2 E2 ~ t 8[cosh(ALt/2)]2  I tanh

Note that Eq. (E.13) is of the same form as Eq. (3.118), i.e. UT = U + UT(Lt). Once

damages form within the 0' plies, the strain energies are determined numerically from

Eqs. (E.14) through (E.16).

1 (1 + L -Lt) d oE(X.)d

UT = 2 Lt ) L J-Lt/2 E 2  (E.14)
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1 bL/2 a2 (x)

Um JL/2 Em

Uf 1 vfb E dx (E.16)2-L/2 E f

Note that the current critical matrix strain energy approach is fundamentally

different than the traditional fracture mechanics approach. This has many advan-

tages. For example, the CMSE approach eliminates dependence on parameters gc

and gb which are difficult to evaluate. Further, no consideration to variations in flaw

size and crack location is required. With the proposed approach, only the critical

composite stress, u, is required to determine the average crack spacing analytically.

In addition, interface debonding and fiber failure are easily incorporated into the so-

lution scheme. For the current analysis, transverse cracking is governed by a critical

strain energy limit in the 90' ply, UcrT; matrix cracking by Uc,. and fiber failure, as

discussed in appendix F, is governed by its own critical energy Ucr1 .

E.2 Estimation of the Initial Crack Density

For the present study, the stress-strain response is predicted using two inde-

pendent algorithms. For applied stresses below the critical composite stress (i.e.

a < a9), the rule-of-mixtures (ROM) solution is employed. For a > oc,, the shear-

lag analysis is used in order to account for laminate damage. In dividing the solution

algorithm into two schemes, ROM and shear-lag, the analysis code becomes more

efficient since crack density data for a < a, (i.e. left of point 'c' shown in Fig. E.8)

does not need to be estimated. However, the initial crack spacing, Linit, at o, = ac

must be determined for the CMSE failure criterion.

To better understand how Lii is calculated, recall that the instantaneous

matrix strain energy, Um(L), can be written in terms of the undamaged strain energy,

Urno, plus an additional term which accounts for the fact that energy is transferred

between the constituents because of existing damage. Experimentally, the energy
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Figure E.8 Typical stress-strain and crack density development within a brittle
fiber-reinforced composite. A rule-of-mixtures stress-strain approxima-
tion is also shown.

transfer manifests as a deviation in the composite's stress-strain response from its

linear ROM approximation (Fig. E.8). Numerically, of course, the energy transfer can

be monitored directly. For example, Fig. E.9 shows the deviation in the matrix strain

energy at ur,, for various crack spacings. The strain energies have been normalized by

the undamaged matrix strain energy Urn,; hence, the ordinate value of 1.0 represents

critical matrix strain energy, Ucrm if o = cr.

For the current analysis, the initial crack spacing is chosen such that the

strain energy of the damaged configuration is "close" to the strain energy in the

undamaged configuration Urn. For example, for a deviation of three percent (i.e.

Um = 0.97 Urno), the predicted crack density matches well with the empirical data

presented by Kuo for a SiC/CAS system [103]. In both cases, the crack density is

determined to be 0.747 1/mm for a,, = 200 MPa. For the present study, a con-

stant deviation of one percent, Um = 0.99 Urno, is used for all cases. Under this

condition, the initial crack density is determined to be 0.26 1/mm for the SiC/CAS
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laminate (Fig. E.9). By limiting the deviation in the matrix strain energy, the

1.01

.. . . E X "M X

0.99

Crack Density = 0.26 /mm
20.98

10.97

0.96 Crack Density = 0.747/mm
N

0.95
0

0.94 Applied Stress = 200 MPa

0.93 .
0.01 0.02 0.03 0.04 0.05

Crack Spacing (mm)

Figure E.9 Deviation, away from the critical matrix strain energy, in the matrix
strain energy as a function of crack spacing. The plot is for a constant
critical stress value of 200 MPa.

stepped appearancet of the stress-strain response is reduced. The change in the ini-

tial crack density between the two cases (0.26 1/mm versus 0.747 1/mm) has only

a slight effect on the composite response (Fig. E.10).

Once the initial crack spacing, Linit, is determined, the instantaneous crack

spacing at any stress level follows directly, and efficiently, from Eq. (3.117). Hence,

under the current CMSE criterion, any energy placed into the system via loading is

transferred to the fibers though the formation of new matrix cracks, the propagation

of existing cracks, and fiber/matrix debonding.

tThe "stepped" appearance results from the transition from the rule-of-mixtures analysis to the

shear-lag analysis. The size of the step is represented by the horizontal spacing between points 'a'
and 'b' in Fig. E.8.
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Figure E.10 Stress-strain predictions for a unidirectional SiC/CAS laminate. The
initial crack density of 0.26 1/rm corresponds to Ucm = 0.99 U,
and the initial crack density of 0.747 1/mr corresponds to Ucm =

0.97 Urn.

E.3 The CMSE Criterion and Its Relation to Variations in the Matrix Strain En-

ergy

A convenient format for representing the critical matrix strain energy (CMSE)

failure criterion is found in plotting the matrix strain energy versus crack density

for various levels of applied stress. The range for the applied stress is reasonably

chosen as aUc < a < cult. A typical plot is illustrated in Fig. E.11. The broom

shaped appearance of Fig. E.11 proves to be an important representation for the

CMSE criterion. In particular, the intersection of the broom bristles and the (dashed)

horizontal line in Fig. E.11 provides information on the expected evolution of the

crack densities predicted by the CMSE criterion. In addition, the bounding limits of
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Figure E.11 Matrix strain energy versus cracks density at various levels of applied
stress. The CMSE failure criterion is represented by the horizontal
dashed line.

the crack densities are easily obtained. In Fig. E.11, the crack density (CD) limits,

for example, are denoted CDinit and CDat for ocr and orat, respectively. Note

that once the interface completely debonds, the matrix stress, and consequently the

matrix strain energy, is independent of the applied load. The matrix stress for a

completely debonded interface has been derived many times for the one-dimensional

micromechanics model [153]. For the shear-lag model, the interface is not only

assumed to be completely debonded, but also to have slipped completely. This is a

reasonable assumption under the maximum stress debonding criterion used in the

present study. Under these conditions, the matrix strain energy is

1.= I(VT /\2L2= 1 / Vfi 2( , 2.(17Urn 6E, v)rfL 6Em \Vrf CD

The reader will note that Eq. (E.17) is independent of the applied stress, a.

The utility of the broom plots is that even though the broom moves around as

input conditions change, the crack densities which will be predicted by the CMSE

criterion are always defined by where the broom intersects the line Um/Ucrm=1.0.
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Hence, in theory, the broom plots are an effective method for investigating the impact

of different input parameters on matrix cracking. In addition, these plots point out

the expected limitations of the CMSE failure criterion. These are discussed later in

this section

In general, the shape and location of the broom is dependent on the laminate's

composition and residual properties (e.g. fiber volume fraction, interface strength,

and residual thermal stresses). However, since matrix cracking is coupled with the

other damage modes, the salient features of the broom are also dependent on the

extent of debonding and fiber failure. The remainder of this section investigates the

influence of debonding on matrix cracking. As would be expected, the two modes

are highly coupled.

Figure E.12 illustrates the dependence of matrix cracking on interface debond-

ing. In particular, four plots are generated: d = L/2, d = 16 rf, d = 8 rf and

d = 0. For each plot, the debond length is held constant. For convenience, the ratio

Um!Ucrm is plotted against Lsa,/L where L,,t is the bounding limit obtained from

the classical ACK analysis, i.e.

L~a =1.37rf vm Em
Lsat := 1.3-- a, (E. 18)

27i vf E1

Clearly, from Fig. E.12, the crack densities predicted by the CMSE criterion change

dramatically with debonding. Two cases of particular interest occur when the inter-

face is completely debonded (i.e. d = L/2) and when it is fully bonded (i.e. d = 0).

These are now considered.

The first case considered is for a completely debonded interface, d = L/2. The

broom plot for this situation in given by the first (upper left) plot in Fig. E.12.

Note, that in this case, the CMSE criterion is satisfied at only two points: L =

Linit and L = Lst. By definition, these correspond to the conditions a = a,, and

0o = Osat, respectively. In addition, because of how Ucrm is defined, the first point,
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Figure E.12 Broom plots for d = L/2, d 16 rf, d = 8 rf and d = 0. In each case,

the debond length is held constant.

(Um.(L) = Ucrm, L = Linit), is always a solution. Based on the shape of the broom

plot in Fig. E.12, it is apparent that for an incremental increase in applied stress, the

predicted crack density will jump from CDinit to CDsat. Hence, an extensive amount

of matrix cracking occurs instantaneously. This is the same as the classical solution

for a debonded interface as formulated by Aveston, Cooper and Kelly (ACK) [8].

The other limiting solution is obtained when the interface is fully bonded (i.e.

d = 0). The broom plot for this configuration is given by the last (lower right) plot

in Fig. E.12. It is clear from this figure that an extensive amount of cracking will
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be predicted. This is to be expected since for a bonded interface the applied load is

readily transferred between the constituents, and therefore, the stress in the matrix

increases much faster than in the debonded case. Hence, the final crack densities for

a fully bonded interface can be expected to be much larger than for a completely

debonded interface. The same argument can be made for a fully debonded interface

with a high interface shear strength, ri, versus a debonded interface with low interface

shear. The fact that the broom bristles are approaching horizontal indicates that for

a completely bonded interface, the evolution of matrix cracking is again very rapid.

That is, large decreases in the crack spacing can be expected for incremental rises

in stress. In contrast to these two limiting cases (d = L/2 and d = 0), the CMSE

crack density evolution for a partially bonded interface (second and third plots in

Fig. E.12) are well defined and representative of empirical trends.

Unfortunately, Fig. E.12 does not provide a complete picture for how the crack

densities will evolve under the current formulation since the debond length will vary

with loading. Recall, that for each of the four plots in Fig. E.12, the debond length

is held constant. Figure E.13 shows several broom plots which are generated using

different debonding criteria. As expected, debonding plays a large role in the crack

density evolution.

For the upper left plot in Fig. E.13, the debond length is held constant at each

applied stress level, but is allowed to increase as the applied stress increases. The

formula used in determining d is shown in Eq. (E.19) where Fd is a constant which

varies linearly with a and has end conditions: Fd = 0 for a = a,, and Fd = 1 for

Or -= Osat .

d= FdoL/(2ac,) (E.19)

The second plot (upper right) in Fig. E.13 is generated using a debond criterion

which assumes that the ratio d/L remains constant and independent of the applied

stress. In particular, it is assumed that d = L/100, independent of a. For the third

case (lower left), the ratio of d/L is again held constant at each stress level, but this
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Figure E.13 Normalized matrix strain energy versus crack density for several
debond criteria.

time, the ratio is assumed to increase with the applied load (e.g. for a = 200 MPa,

0 < 2d/L < 0.01, for cr = 205 MPa, 0.01 < 2d/L < 0.05, etc). The last plot in

Fig. E.13 is generated using a simple maximum stress debonding criterion similar to

the one used in the current analysis, however, the solution is limited to one step in

the Newton iteration scheme.
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Even though the broom plots provide information for the evolution of matrix

cracking,t as predicted by the CMSE criterion, the manner in which the information

is presented is somewhat inconvenient. The best approach for examining such data

is, of course, simply to plot the predicted crack density versus the applied stress

plots. Such results for various levels of debonding are shown in Fig. E.14. For each

12 1

6-

2

0, 1.2 1'4 1'6 L'8 2
Applied Stress I Critical Stress

Figure E.14 Crack density versus normalized stress as predicted by the CMSE cri-
terion in which the debond length is held constant. Several curves are
shown for different levels of debonding. The dashed line represents the
ACK solution for gc = 45 N/rn.

prediction, the debond length is assumed constant. Note that the predicted crack

tThe distance between the adjacent bristles along the line Um/Ucrm = 1.0 characterizes the rate
at which crack growth occurs. The closer the bristles, the less rapid is the crack growth, and the
opposite is also true. As an example, for the case of d = 0 in Fig. E.12, the distance between the
bristles for which the CMSE criterion is satisfied is relatively large. Hence, an extensive amount of
cracking occurs for a small increase in stress.
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densities for the two limiting cases, d = 0 and d = L/2 are consistent with the

previous results (Fig. E.12). In both cases, the matrix cracks evolve quickly, and

further the final crack density (CDsat) is much larger for the bonded interface due

to the efficient stress transfer.

It is interesting to note that the crack density predictions in Fig. E.14 define a

fan which forms as the solution for d = 0 is pivoted around the point (4C., CDinit).

The bottom of the fan is defined in the limit as d approaches L/2. Moreover, the

completely debonded solution defines a minimum saturated crack density for the

CMSE criterion. As the bonded solution is pivoted, once the saturated crack den-

sity obtains this limit, the crack density solution bends upon itself,t and eventually

becomes the unit-step response associated with a completely debonded interface.

The fan defines an envelope for the crack densities in which almost any path

can be predicted due to the coupling between the cracking and debonding modes.

In addition, the span of the envelop can be narrowed since it is reasonable to expect

some debonding. The bounding envelop, as predicted, could provide a design engi-

neer with reasonable estimates for the expected crack densities. Also, such plots are

a convenient way of comparing various failure criterion. In this light, the following

section examines the CMSE criterion and its relation to more traditional fracture

mechanics approaches.

E.4 CMSE and Its Relation to Other Failure Theories

As discussed in chapter two, fracture within ceramic matrix composites is gov-

erned by the relation between the crack-tip energy release rate, gn, and the critical

energy release rate, g'. The former is a function of the crack-tip stress fields, and

the latter is an inherent property of the composite. In general, a given fracture will

propagate under the condition that gm _> g'. Hence, given some distribution of

tThe phrase bends upon itself is intended in indicate that the initial slope of the crack density

versus stress curve is increasing, and is indicative of an interface which is completely debonded, but
for which interface slip occurs along only a portion of the debonded region (i.e. x' < L/2) [179].

E-24



matrix flaws, the evolution of cracking can be accurately predicted if g. is known at

each fracture. Unfortunately, predicting the energy release rate in a brittle composite

with multiple crack fronts in far from trivial. Several fracture mechanics solutions

have been presented; however, their implementation has been limited due to the

inherent complexities associated with the analysis. The purpose of this section is

to compare and contrast the CMSE criterion with some of the fracture mechanics

solutions. In doing so, the utility of the CMSE criterion should become apparent.

Also, the CMSE criterion is shown to be reasonable and consistent with the more

traditional criterion.

A good comparison for the CMSE criterion is the energy balance solution

introduced by Weitsman and Zhu [201]. Both solutions are analytic, and under

reasonable conditions, predict a finite stress range over which matrix cracking occurs.

Bounding envelops for the CMSE criterion and the energy criterion employed by

Weitsman and Zhu (WZ) [201] are provided in Fig. E.15. The results shown in this

figure are for a SiC/CAS composite system and are generated by varying the critical

strain energy release rate, g', in the WZ analysis, and the debond length under the

CMSE criterion. The critical strain energy release rate is varied between 20 and

50 N/m. In addition, for the WZ criterion, variable debonding and fiber fracture

are permitted. For the CMSE results, the debond length is held constant and a

minimum debond length of a few fiber diameters is assumed.

As mentioned, the difficulty with the fracture mechanics approaches lies in

trying to determine the energy release rate, g.. Even under the simplest of loading

conditions (e.g. uniaxial tension), the shielding and statistical influences associ-

ated with multiple fractures, as discussed in chapter two, make determination of gm

difficult. To remedy the problem, statistical fits of empirical data are sometimes

used [179]. Bounding envelopes for a statistical model presented by Spearing and

Zok are illustrated in Fig. E.16 [179]. The results are again shown for a SiC/CAS

composite; however, unfortunately insufficient data are presented in the article to
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Figure E.15 Crack density (bounding) envelopes for the Weitsman and Zhu energy
criterion and the current CMSE failure criterion.

determine the exact range of crack densities predicted. The expected range of crack

densities are shown for the Weibull modulus equal to 4 and 10. As would be expected,

the empirical models are more representative of the experimental data.

Due to the statistical aspects of fracture in brittle composites, it is reasonable

to expected that the strain energy release rate, gin, required to propagate a fracture

will increase during loading [171]. This results since more energy is required to

initiate growth in very small flaws as opposed to rather large microcracks which

may exist [127]. In addition, Zok and Spearing illustrated that the strain energy

release rate must also increase due to the shielding effects associated with small

crack spacings.

The strain energy release rate can be estimated by comparing the energy states

before and after the formation of damage. Equation (E.20) represents this result

where "state I" and "state II" represent the damage configurations before and after
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Figure E.16 Crack density bounds based upon a statistical model. The parameter
m is the Weibull modulus.

crack formation.

MW - - AW_ (LidII - Liid1) (E.20)vm Li - Lxij rf LILII

The terms in Eq. (E.20) are defined in chapter two. For the current shear-lag anal-

ysis, the energy associated with debonding, gbd, is neglected; however, a study by

Kuo suggests that gdb/gm < 0.3 for SiC/CAS composites [103]. Also, note that gm

may be determined by assuming that state I is fixed at a given stress and damage

configuration, or else by allowing the state definition to vary with these parameters.

In the latter case, the work terms become trivial, i.e. AW = u(cii - ci), and nu-

merical integration can be avoided. However, care must be taken not to violate the

inherent assumptions used in formulating Eq. (E.20),t

tThe energy balance relation in Eq. (E.20) implicitly implies that large increments in crack

growth are required under the assumption that da = Aa.
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The change in the strain energy release rate, as predicted from the current

CMSE failure criterion, is illustrated in Figs. E.17 and E.18. The results in Fig. E.17

are shown for when state I is assumed to vary; whereas the results in Fig. E.18

assume that state I is fixed. In both cases, solutions for a range of debond lengths

are presented. Also, note that the strain energy release rate is normalized by the

critical energy release rate, gc, which is taken as 50 N/r. For both figures, g.

2

Completely Debonded Interface

Fully Bonded Interface

1.2 1.4 1.6 1.8 2
Applied Stress / Critical Stress

Figure E.17 Strain energy release rate versus applied stress.

increases with the applied stress, as expected. In addition, from Fig. E.18, the strain

energy release rate can be expected to range between 0.3 g' and 0.75 g' . This is

consistent with experimental data [37]. As a special case, when using Eq. (E.20)

with the empirical data from Kuo, gm is found to vary almost linearly over this same

range [103]. Under the WZ criterion, g, is assumed constant.
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Figure E.18 Strain energy release rate versus applied stress with state I fixed.

A final comment on the WZ criterion is also in order. Recall, that each time

the energy failure criterion is satisfied the crack density doubles. This results by

design since the crack ratio, LI/LII, appearing in Eq. (E.20) is assumed to have

magnitude 2.0. To examine the impact of this assumption on the evolution of crack

densities, the energy criterion in Eq. (E.20) is now investigated for arbitrary crack

ratios.

When applying the WZ criterion with g' = 45 N/m, the predicted range of

crack densities is in tolerable accord with the empirical data; however, the predicted

evolution fits the empirical data only in piecewise steps (Fig. E.19). The gradual

evolution of matrix cracking, as observed experimentally, is not captured. At first

glance, it is reasonable to suspect that the discrete steps results from the assumed
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doubling in crack density. To investigate, the crack density is now predicted under

conditions of arbitrary crack ratios, LI1/L. In performing the analysis, it is found

that the predicted crack densities do not change for 1.05 < LI/LI < 2.0. Ratios

below 1.05 are not examined since Eq. (E.20) becomes singular as LII-+ LI. The

fact that the crack densities are independent of the ratio of LI1/L results from the

fact that the magnitude of g, is for all intensive purposes independent of L when

d, gdb and o, are assumed fixed. This is also the reason for the stepped stress-strain

responses predicted by the energy balance solutions. The change in the predicted

matrix strain energy, normalized by UCm, is shown in Fig. E.20 for crack ratios of

LI/LII = 1.1 and LI/LI = 2.0. The latter is the WZ criterion.

The vertical drops in Fig. E.20 represent solutions to Eq. (E.20); hence, each

drop represents a change in the crack density. Clearly, the crack density progression is

very similar for the two cases, and therefore, the assumed crack ratio of LI1/LJ = 2.0

is not believed to be the reason for the discrete or piecewise crack density predictions

presented by Weitsman and Zhu. In general, matrix cracking under the energy

criterion represented in Eq. (E.20) is dependent on three parameters: gc , d and

gdb in which d is a function of L and a. Unfortunately, Eq. (E.20) is extremely

sensitive to these parameters. Moreover, since the material constants gc and gdb are

unknown, it is difficult to justify any solution from Eq. (E.20). Hence, in the authors

opinion, the CMSE criterion is currently the best analytical approach for predicting

the evolution of matrix cracks.
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Figure E.19 Applied stress versus crack density as predicted by the current analysis

and a classical fracture mechanics (CFM) failure criterion and the

current critical matrix strain energy (CMSE) criterion.
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Figure E.20 Normalized matrix strain energy versus normalized stress based upon
the fracture criterion presented by Weitsman and Zhu [201].

E.5 Sensitivity Analysis

For unidirectional composites, the nonlinear material response is due, in large

part, to the relative magnitudes of the crack spacing, L, and debond length, d,

rather than matrix cracking or interface debonding alone. Uncertainties in material

properties which influence L and d may therefore be significant sources of error. In

light of this, the critical composite stress, a,,, the ultimate interface shear strength,

Tult, and the interface frictional shear stress, T7, are investigated since they are deemed

the most important parameters for the present closed-form analysis. The interface

parameters (T,,It and Ti) are difficult to measure experimentally and a wide scatter

of data is reported in the literature (due in part to the use of various interface

coatings and curing processes) [12]. Further, although o, may be easily determined

from experimental data, its influence on the proposed model is unknown. In an

attempt to better characterize the cracking and debonding modes, fiber failure is

not considered.
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It is known from experiments that matrix cracking initiates at a stress level

often far below the proportional limit [103]. However since this crack density is low,

its influence is negligible. Hence within the present algorithm, it is not necessary

to capture the initiation of matrix cracking but rather only the crack density corre-

sponding to the start of non-linear behavior is required. In the present formulation,

the deviation of the stress-strain curve is caused by the damage term Um(L) in the

CMSE relation

Urn, + U..(L) = UC. (3.117)

If the critical stress is chosen inappropriately low, the desired initial crack spacing

which is predicted should tend to be large such that Urn(L) is negligible. If not,

the predicted response would incorrectly become non-linear at this stress level. It's

effect, as desired, manifests itself as both a continued linear stress-strain prediction,

as well as an initial horizontal "step" on the crack density versus applied stress plots

(i.e. no increase in crack density). The latter requiring Urn(L) to remain negligible

until the "correct" o,, is obtained. If the critical stress is chosen too large, the

initial crack spacing becomes excessively small; resulting in an inappropriately large

disparity in strain (at ~cr) between the rule-of-mixtures subroutine and the shear-lag

subroutine. However since cr was chosen large anyway, it would be desirable if the

jump in strain placed the predicted response back on the correct path.

A series of computed normalized crack density [normalized by 100 (rf /L)] ver-

sus applied stress plots are provided in Figs. E.21, E.22 and E.23. These figures

indicate the influence of oc, mnut and Ti on matrix cracking for the current analysis.
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Figure E.21 Influence of Tj on the crack density progression during loading. Data
is shown for both a,,r 140 MPa and or,, 200 MPa.
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Figure E.22 Influence of Tult on the crack density progression during loading.

The influence of the frictional interface shear stress and the critical composite

stress on the crack density progression within the laminate is shown in Fig. E.21. The

stress at which crack saturation is reached appears to be independent of ri; however,

variations in rwt cause crack saturation to be achieved more sharply with increasing

value of 7Tult or gradually with decreasing value of T,,t. That is, as rft increases, the

stress differential, 7sat - 0 .r, from crack initiation (or,) to crack saturation (at)

decreases. Clearly, , Ti and T It may be estimated by fitting a set of empirical

crack density data. For example, choosing or, = 200 MPa, rT = 35 MPa, and

TIt = 220 MPa provides a good fit to the empirical data provided by Kuo [103]

(Fig. E.23). Of course, these parameters should not be arbitrarily selected to match

existing data, but rather should be obtained based upon physical evidence (push-
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out tests, stress-strain response, etc). Based upon published data, ri is probably

closer to 10 MPa [103]. The crack densities for ri = 10 MPa are also shown in

Fig. E.23. Interestingly enough, even though the crack density curve for ri = 10

MPa seems to have significant error (i.e. doesn't match empirical crack densities),

the resulting stress-strain responses for ri = 10 and 35 MPa (Fig. E.24) are quite

similar. This again results from the fact that the stress-strain response is dependent

on the relative magnitudes of L and d rather than their exact values. Hence for

the purpose of predicting the composites stress-strain response, it is not required

to exactly match empirical crack density data. Of course doing so may provide

insight into the progression of interface debonding and/or variations in interface

shear stresses.

10
x Experimental [103]

"Fa 8 o Current Analysis

0

CI=35M Pa

0

"o2

xx

Z .×; c =,0

00 0.2 0.4Percent Strain

Figure E.23 Normalized crack density versus strain. Empirical data are from ref-
erence 103.
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Figure E.24 Stress-strain predictions for ri 10 MPa and ri 35 MPa.
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Figures E.23 and E.24 indicate that even though the crack densities decreased

significantly for ri = 10 MPa, the debond length appears to have increased enough

such that the resulting stress-strain response remained approximately equivalent to

the original case (Ti = 35 MPa). Similarly, relatively large changes in ar also result

in small changes in material response curves. For example, Fig. E.25 shows that for a

60 MPa variation in C, the maximum (stress) difference in the predicted stress-strain

curves for any value of strain is only around 20 MPa. As this variation decreases,

the error quickly vanishes, and as such the present algorithm is surprisingly robust

to variations in the critical composite stress. Based upon these results, a series

of parametric studies may be developed which will yield information on not only

Tj and rUt but also upon the progression of interface debonding during loading.

As mentioned, if as,, is chosen small, Urn (L) should be negligible; at least until

the "correct" proportional limit is reached. Again this would show up as an initial

horizontal step in the crack density curves; minimal debonding, as well as a continued

linear response in the stress-strain plots.
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Figure E.25 Stress-strain response for critical stress values of ar,,= 140 MPa and
Ucr = 200 MPa. For a strain value of 0.00165 (vertical line), the
difference in stress is approximately 20 MPa.
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Appendix F. Fiber Fracture in Ceramic Matrix Composites

The percentage of fracture fibers, D, in ceramic matrix composites is typi-

cally determined using some type of statistical failure criterion. The most common

approach is to use a two-parameter Weibull distribution of the form

D= I-exp -L (F.1)

where a and P are constants which are determined from dry bundle tests of fibers

(ex-situ). Such tests are difficult to perform, and have resulted in a wide scatter

of reported data. In addition, the variation between ex-situ and in-situ values is

unknown. To avoid these problems, a fiber fracture criterion independent of any

empirical constants is sought. This appendix outlines two approaches considered

in the present study. The first solution is an attempt to find D analytically using

a discrete approximation. Unfortunately, the solution overestimates the percent-

age of fractured fibers under the current strain energy approach. As a result, a

statistical approach is adopted. The analytical criterion, as initially developed, is

presented in the first section of this appendix. After this presentation, the statistical

model is briefly revisited.t The appendix concludes with some final comments on

Weibull statistics and the present critical energy approach. Some brief comments on

fiber/matrix debonding are also included as an aside.

F.1 Fiber Crack Density: An Analytical Model

Consider the extended representative volume element (ERVE) shown in Fig. F. 1

in which the composite is divided into NL/& discrete cells where L is a characteristic

length of composite;1 & is the effective length over which the fiber crack influences

the local fiber stress and N is the number of fibers in the ERVE. The elastic modulus

tThe statistical model for fiber fracture is discussed in greater detail in chapter three.
$Typically, L is the gage length of the laminate.
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Figure F.1 Extended representative volume element (ERVE).

of each cell is assumed to be

E c f vEf + vmEm uncracked fiber (F.2)

SvE, cracked fiber.

Additionally,
L/

L= Z ik for any i (F.3)
k=1

and
N

Na (7 for any k (F.4)
i=1

where C. is the strain corresponding to the cell in row i and column k and O4 is the

associated stress. It may be shown that

a Nk- ZZ vmEmi4± + (vf Ef + vmEm)t64 (F.5)
= i=1 i=cj'+1

k=lt I~~ )

where ck is the total number of cells with cracked fibers in column k. Letting

the total number of cells be c and assuming a uniform distribution of fiber cracks
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(Ck = c5/L Vk), then

a Vf (I c) Ef+vmEm (F.6)

where c6/NL is recognized as the normalized fiber crack density.

Now since fiber failure is assumed to initiate at a critical fiber strain energy

Ucrf and since
L16 N 1___ 

(F.7)

it is determined that

Cf c6 u. (F.8)

By definition D = cS/NL and therefore from the above relation

D = - Urf (F.9)
Uf

As mentioned, Eq. (F.9) overestimates the extent of fiber fracture during quasi-

static loading of brittle composites. As a result, it was determined that some em-

pirical constants would be required. However, the number of empirical constants,

as well as their availability were concerns of the present analysis. As shown in the

next section, D was assumed to follow a Weibull failure distribution in which only a

single empirical constant needed to be determined. Further, this constant is easily

obtained.

F.2 Fiber Crack Density: A Statistical Model

For the present study, the probability of fiber failure or equivalently, the cumu-

lative distribution of fiber crack density, is represented by the parameter D. Further-

more, fiber failure is accounted for in the current shear-lag formulation by modifying

the (fiber) stress boundary condition along the plane of the matrix cracks according
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to Eq. (F.10).

a x _LD)"(F.10)f ( 2 vf(1 - D)

This is the same approach as employed by Rouby and Reynauld [163].

Statistical approaches are commonly used to model the failure of fibers in

reinforced composites [35,64,141,162,163,201,214] The classical paper in this area

is by Rosen in which the composite was treated as a chain-of-bundles where the

concept of a "weakest link" was applied to determine the cumulative crack density

of fiber fractures [161]. The chain-of-bundles approach assumes that each fiber may

be divided into a number of evenly spaced segments (or links) of length 6f such that

the total length of the fiber is given by Lf = bfN where Nf is the total number of

fiber links. Each fiber link is assumed to be characterized by a strength distribution

of the Weibull type. The characteristic distance b1 represents the length over which

the local constituent stresses are influenced by the fractured fiber, and depends

largely on Ti [161]. In his analysis, Rosen assumed that each link was characterized

by a two-parameter strength distribution function, 9(a) [161].

9(r( ) = brlr 2
( r 2 - 1)exp(-r 1 fol r 2) (F.11)

The scaling and shape constants r, and r2 are evaluated from empirical data.

More recently, Curtin [36] presented an analysis which assumed that the fiber

crack density was given by

D=1- 1D = I1- ex((~~)(3.121)

where

) (L, o) = L4 o (F.12)
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and o is the stress required to cause one failure, on average, in a fiber of length

L, [36]. These data (o and L,) are again determined experimentally. The Weibull

modulus, m, characterizes the variability of the data about the average [36].

For the present study, the fiber strength distribution is again assumed to be

of a Weibull form; however, instead of using the fiber stress to characterize the

distribution as in the previous cases [36,161], the fiber strain energy, Uf, is used to

model fiber fracture. For this study, the percentage of fracture fibers is given by

I
D = 1- 1 (F.13)

where Ucr is the critical fiber strain energy defined as the average strain energy

in the fiber when fiber fracture initiates, and rh is now the Weibull modulus. The

argument 1 - U 1 /Uf is chosen based upon the analysis presented in the previous

section. Further, it is recognized that Eqs. (F.11), (3.121) and (F.13) all represent

cumulative fracture distributions with ol1 of the form

r, (F.14)

where r, and r 2 are constants. However, the distribution in the present study assumes

that there exists a threshold stress below which no fiber failure occurs, i.e.

¢=rl (c --af)t 2  (F.15)

The stress at which fiber failure initiates, aff, is defined as the stress at which

a maximum or saturated crack density is obtained for D = 0, and is determined

analytically from Eq. (3.117).

Failure distributions similar to Eq. (3.121) have also been used to predict ma-

trix cracking in brittle composites [37,117,179]. However, fiber failure in ceramic
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composites is distinguishable from matrix cracking by one important factor. During

matrix failure, the fibers are, in general, able to carry the additional stress. However

during fiber failure, there is a critical fraction of broken fibers beyond which addi-

tional load will fail the composite. The critical fraction of fractured fibers is denoted

D* where if D > D*, composite failure occurs. Hence, D E [0, D*] where D* < 1.

The parameter D* may be related to the traditional Weibull modulus, m, by

Eq. (F.16) as reported in reference 163.

D* 2 (F.16)rn+2

From Eq. (F.13), the current Weibull modulus, rh, is also dependent on D* as given

by Eq. (F.17).

In ln (11 )M In (1 -UC'f (F. 17)

where U; is the average fiber strain energy at composite failure. Since the damage

configuration at composite failure is not known a priori, r must be determined.

The constant rh is obtained by fitting empirical stress-strain for the unidirectional

laminate. Further, obtaining and fitting the experimental stress-strain data is easily

accomplished. Also, based on Eqs. (F.16) and (F.17), a range for fh may be estimated

based upon reported values for m. A common range of rn for a SiC/CAS composite

is between 2 and 10 which corresponds to a range of 1.25 to 5.5 for rn [36,37,163]. For

a unidirectional SiC/CAS laminate, rh = 2.0 is found to match well with empirical

data [175]. Finally, D* is assumed to be a constant of laminate lay-up for the same

material, and is found to be 0.42 for SiC/CAS [175].

F-6



When accounting for the fracture of fibers in this manner, the fiber stress,

af(x), in Eq. (3.45) becomes

f° + coshl OLa-d)] vf(1-D) f- 2 d bonded region
af~x W coh[ 2 -d]G(1-D f)(B. 16)

U - (L/2 - Ixj) debonded region.
Vf (1 - D) rf rj

From this, the remaining stresses, am(x) and ri(x), may be determined from Eqs. (3.8)

and (3.10). For the cross-ply laminate, the fractured fibers are accounted for in the

analysis by replacing the quantity vf appearing in the definitions for the constants

Cl -C4 (chapter three) with vf(1 - D). For completeness, a brief discussion of Weibull

statistics is provided.

F.3 Weibull Statistics

Ceramic materials have randomly distributed imperfections (e.g. voids and

inclusions) within their microstructure. These defects are statistical in both size

and location. It has been well established that the failure distribution for brittle

cylindrical fibers can be described by a statistical distribution known as the Weibull

distribution. For such a distribution, the probability density functiont, f(x), is given

by the following two parameter (a and/3) distribution

f(a) = LaaC3  1) exp {_LaaO/} (F.18)

where L is the fiber length, a is the fiber strength. Furthermore, the cumulative

failure distribution, F(x) and the expected value, pu, are

F(ar) = 1- exp I-L (a (F. 1)

tThe area under the probability density curve defines the probability.

F-7



PX =_' (LF) (- 1 / O) • P(1 + 1/3) (F.19)

where F() is the well-known gamma function. Note that px is also the mean (nomi-

nal) fiber stress [25]. It may also be shown that

In In I F ) = na + Ina. (F.20)

The constants, a and /, may be determined by fitting empirical fiber crack density

data according to Eq. (F.20).

The Weibull distribution assumes that the fibers is composed of a number of

segments of the same length, and in which each segment has an equal probability

of failure according to Eq. (F.1). In engineering mechanics, the cumulative survival

probability [Eq. (F.1)] for continuous fibers is typically written as

D = 1 -exp {(- (F.21)

where o is some characteristic fiber strength and m is the tradition Weibull modulus.

From Eq. (F.21), a, corresponds to a survival probability of 0.37 percent. Figure F.2

shows schematically the strength distributions for various values of m. The shape

and scaling parameters, a, and m, may be determined by fitting empirical data;

however, their solution is somewhat involved since the variation in D versus a, as

shown in Fig. F.2, cannot be solved for directly.

F.4 Fiber Crack Density: An Alternate Approach

In chapter three, it was shown that the instantaneous average crack spacing

could be estimated by ensuring that the matrix strain energy never exceeded some

critical value, Urm, according to Eq. (3.117).

Un + Ur (L) = Uc (3.117)
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Figure F.2 Cumulative probability distributions based upon a Weibull formulation.

The parameter Ur, 0 is the matrix strain energy which would exist if the composite

was undamaged. The fact that matrix cracks do exist and some energy is transferred

from the matrix to the fiber is accounted for by the term Um(L). The constant UCm

is assumed to be a known lamina property and was termed the critical matrix strain

energy.

It may be shown that Eq. (F.9) can be reformulated in terms of the critical

fiber strain energy according to the following equation in which the fraction of broken

fibers in now the perturbed parameter.

U10 + Uj(D) = Ucr, (F.22)

Note, that the variable D in Eq. (F.22) loses it physical significance since D must

increase in order for the left hand side of Eq. (F.22) to decrease. Hence, the actual

number of fractured fibers must still be determined empirically. However, the two
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problems can be posed in a similar manner. In both cases, there exists some damage

parameter, P, which fails according to Eq. (F.23)

P = (1 - X) P + xPsat (F.23)

where P is the initial parameter value; Psat is the final magnitude, and X is the

damage index C [0, 1]. For the current analysis, P E {L, d, vf}. Further, based on

the assumed critical strain energy relations (e.g. Up. + Up(X) = Upc),

P - F(Up) (F.24)
P" - Pct

where .F(Up) is an inverse function of the strain energies. For matrix cracking,

.F(Up) is known directly; however, when considering fiber failure, F(Up) cannot be

determined and therefore is assumed.

F.5 Aside: Fiber/Matrix Debonding

Recall that interface debonding is assumed to occur whenever the interface

shear stress, i(x), exceeds the ultimate strength of the interface, r7at. Hence, under

this maximum stress approach, the debond length may be determined by ensuring

that ri(x = L/2 - d) = rt. With the addition of fiber fracture, the extent of

debonding for the unidirectional laminate is given by Eq. (F.25).

1 vm o + D o 1 t(F.25)
2rf vj Ti E1 1- D j fiG Tj

where
E..

* -- + EI(a, - a1m)AT (F.26)
mo E11 - 1D

F-10



Equation (F.25) must also be solve iteratively, however, a simple Newton iteration

scheme is suitable, e.g.

+T7,lt rf fVm a'' Ef D c
dn Gri 2 v rj El 1 - D T

d+l = d. (F.27)

For cross-ply laminates, the maximum stress criterion is again adopted for

debonding. However, the debonding is assumed to occur only within the 00 plies of

the cross-ply laminate. Accordingly, the debond lengths are determined numerically

from the following two coupled equations.

rf sinh (Ax,,),,- _Y~ c3ocosh(pl)+ c4/3sinh(4l) + H cosh (ALt/2) = - (F.28)

+ f sinh (Axtix= r) 1_
2 c3/3cosh(0r)+ c43sinh() + cosh(ALt/2) =Tu (F.29)

where Tult is the ultimate interface shear stress of the bonded fiber and matrix, and

01 = Q (-L/2 + d1) and O5r r 3 (L/2 - dr).
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Appendix G. Strain Ratchetting in Unidirectional Laminates: An

Analytical Model

In an attempt to capture the influence of strain ratchetting which is observed

in fatigue tests of ceramic composites, the modeled fiber stress is augmented by a

constant stress, Ao(N). This quantity, Ao(N), is an approximation for the addi-

tional stress experienced by an undamaged fiber when adjacent fibers fracture and

pull-out from the surrounding matrix according to a uniform distribution. Further-

more, the introduction of this stress is necessary since the shear-lag model, in the

traditional manner, fails to capture the continuous progression in permanent strain

(e.g. strain ratchetting) which results from fiber pull-out.

Once a fiber fractures and debonds, the extent of pull-out is dependent on

the interface resistance, ri, as well as any obstructions which may collect along the

interface (e.g. surface asperities, debris from broken fibers and/or matrix). Further-

more, upon unloading, the fiber crack opening does not necessarily vanish due to the

surface obstructions, fiber warping, and Poisson's effects. Since these phenomena

restrict constituent slip, they may be modeled within the unidirectional unit-cell as

a region which never debonds nor slips upon unloading. The introduction of this

permanently bonded region (PBR) represents areas within the laminate where slip

is obscured, and more importantly, the application of this frictional region leads to

an analytical solution for the development of permanent strain. The development is

present in this appendix.

Since the modified fiber stress distribution, as shown in Fig. 3.17, is assumed

linear, Aa(N) may be determined provided the stress at any point is known. This

point may be taken anywhere, i.e. xo = 7L/2 where yt defines the region within

the shear-lag model where debonding is prevented (i.e. T-:tt = oo). Note that this

to<-y< 1
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constraint has only been introduced to find of(Xo) and the constituent stresses will

be defined in the limit [Eq. (G.1)] as the permanently bonded region vanishes.

lim
Aot(N) = -1 *0 Ao(N, y) (G.1)

When evaluating the limit of Eq. (G.1), stress equilibrium must be maintained.

Further two constraints need to be taken into account. The first is to ensure that

the fiber carries all of the stress along the plane of the matrix crack [i.e. am(x =

±L/2) = 0]. The second constraint is derived from the fact that upon complete

unloading, the strain in the matrix is known a priori [Eq. (3.125); Fig. 3.17].

During loading, the constituent stresses within the permanently bonded region

remain unchanged from those previously determined [Eq. (3.45)]; however, since slip

is prevented during unloading within this region, the resulting shear-lag equations

produce a Ao(N, -y) which may be determined since the matrix strain is defined

upon unloading. The additional fiber displacement due to Au(N) is now defined by

8(N) according to Eq. (G.2).

b(N)- Au(N)L (G.2)Ef

The desired stress Au(N) may now be determined by evaluating 8(N, -I) as -7 --

0 under the aforementioned considerations. As expected, Aa(N) depends on the

extent of composite damage, the maximum applied stress, and the degradation of

the interface shear.

G.1 Formulation of Ao(N)

The formulation of Ao(N) consists primarily of three steps. For the analysis,

consider a unit-cell which has length L (i.e. x E [-L/2, L/2]) and which is assumed

to contain a PBR (x C [-yL/2, -yL/2]) which neither debonds during loading, nor

slips during unloading (Fig. G.1). The first step of the analysis is to determine the
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Figure G.1 A modified unidirectional unit-cell incorporating a permanently bonded
region (PBR) for analysis purposes.

constituent stresses of (x) and orm(x) during a complete loading and unloading cycle.

After unloading, the residual matrix strain is not consistent with the expected value

due to the presence of the PBR, and therefore, the constituent stresses must be

adjusted to ensure the desired result is obtained. The adjustment of the constituent

stresses constitutes the second step of the analysis. The final step in finding Ao-(N)

lies in determining the fiber stress as the permanently bonded region vanishes (i.e.

-- 0). Each of these three steps are now considered.

G.1.1 Residual Constituent Stresses in the Modified Unit-Cell. Because of

the assumed geometry, only one-half of the unit-cell needs to be modeled. Hence,

consider only the axial coordinates: x E [0, L/2]. It may be shown that during

loading the stress in the fiber is

07(x) (1 D) = - - for x G ['L/2, L/2], (G.3)

O7x W = af. + cosh(#3x) a 07 - TiL forx
cosh(P-yL/2) vj(1 - D) o x[OL/2] .

(G.4)

Further, since the interface is not permitted to debond within the PBR, the shear

stress which develops along the fiber/matrix interface may exceed the ultimate
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strength of the interface rIt. Recall that previously under the maximum stress

debonding criterion, r,,lt was assumed to be the maximum obtainable value for

ri(x). This is no longer the case, i.e. ri(x = yL/2) > rIt. Now, if we define

(-), kt to be the maximum shear stress which develops under the new geometry

(i.e. kilt ri(x = -yL/2) at a = Ormax), then it may be shown that

, irf tanh (f3yL/2) a - - (1 - -- (G.5)
2 Vf (1 D) UmaxL

Moreover,
7-i (x = -yL/2) = .jt (G.6)

since slip is not permitted within the PBR during unloading. By enforcing the

equality in Eq. (G.6), the fiber stress along the PBR during unloading becomes

(x) = U + cosh(L/2) v(1 D) - a + (1- -Y)TLr (G.7)

where

Ti = (1 -- y)L {IOritanh v(1 - D) + af.}. (G.8)

Furthermore, the fiber stress outside the PBR is

a.)- ( a ( L 2r x- -. (G.9)

( vf (1-D) r r'j

The latter is determined by ensuring the fiber stress remains continuous.

The stress in the matrix may be determined from Eqs. (G.7) and (G.9) since

equilibrium requires that

o" vf o'W + (I - -Y) v:___ L - ) (. 0
am(x) = vm(1 - D) v. vf (Ti- ). (G.10)

Then, upon complete unloading, the fiber/matrix constituent stresses may be de-

termined by evaluating Eqs. (G.7) through (G.10) at r = orai. In performing the
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analysis, one finds that the matrix strain resulting from Eq. (G.1O) is in disagree-

ment with the known magnitude for a completely debonded interface. Hence, the

next step in the analysis is to adjust the constituent stresses within the unit-cell to

ensure that the desired matrix strain is predicted.

G.1.2 Re-Evaluating the Residual Strain. For a completely debonded in-

terface, the matrix strain resulting from load cycling of a unidirectional laminate is

readily available. Let m define this strain; then under the present shear-lag formu-

lation,
2 L/ 2 Vj 2-i

foI vf - (x- L/2) dx. (G.11)
EmL Vm rf

However, due to the introduction of the permanently bonded region into the unit-

cell, the predicted strain does not equal cm, and therefore, it is necessary to adjust

the former distribution to ensure the resulting matrix strain is equal to Em. This is

accomplished by superimposing a constant stress Aa7m on the previous solution to

obtain the desired value. In other words, define Aorm such that

2 [L/2
EL j o m(x)- Acrm} dx =m (G.12)

where um(x) is defined by Eq. (G.10) and Aam is the required stress adjustment.

The latter may be determined directly from Eq. (G.12), and is a function of -y.

Pictorially, this process is illustrated in Fig. G.2. The unmodified matrix stress

distribution, as predicted by Eq. (G.10), is represented schematically by the dotted

line in this figure. The adjusted (dashed line) and desired (solid line) stresses are

also shown. As is evident from Fig. G.2, the predicted stress is increased uniformly

until the adjusted and "actual" stress distributions represent equivalent strains.

G.1.3 Removal of the PBR Constraint. The final step in the analysis is to

consider the resulting fiber stress as the permanently bonded region vanishes. For

this part of the analysis, let's again introduce the parameter 6(N) which represents
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Figure G.2 Stress distributions after unloading for a completely debonded interface
and an interface with a permanently bonded region.

the fiber pull-out distance associated with the stress Ao(N) [Eq. (G.2)]. Further,

given the adjusted matrix stress, as determined in the previous section, the following

relations [Eqs. (G.13) and (G.14)] may be shown to be true.

6(N) =j L/ uf + -Acm + + (1- _Y)-> dx
E v cosh(/3yL/2) vf(1 - D) rfd

+ L/2 + + (I - 7)L TO)-2ri(x-L/2) dx

IyL/2 vf( 1-D) vf rf r
- IL/2 2- (x - L/2) dx1  (G.13)

O= 'min

and

AO(N) = 1I { [ D)a mtn - (Cf°max - UfAi)1 [-OL - 2tanh (rnSLI2)]}

+ Ti{( 3 ,y - 2)-yPL + 4(1 - -/) tanh (rilL/2)} (G.14)
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Finally, equating Eq. (G.13) into Eq. (G.2) and considering the limit as -y -- 0, the

desired stress, Ao(N), is found to be

A(N) = VmEma + DvfEf _ 2ri(N) L (4.3)
vfN(I - D)E1  max

where the interface shear is assumed to degrade with load cycling, i.e. ri = ri(N).

As expected, the extent of fiber pull-out is dependent on the maximum applied stress

(Umax), the interface resistance [ri(N)], and the composite's state of damage (D, L

and d). The final constituent stresses upon unloading are illustrated in Fig. G.3. Note

FiberStress

rf

AG(N)

Xo x

Matrix
Vmrf

Stress
Figure G.3 Final constituent stress distributions.

that the matrix stress is as desired, and the fiber stress is adjusted appropriately.

In fact, the application of the permanently bonded region is simply a mathematical

means for determining the fiber stress at a single point, x,. In this case, x, = YL/2.

Furthermore, once the stress at this point is determined, the fiber stress is known

everywhere since the distribution varies linearly with slope 2ri/rf.
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Appendix H. Strain Ratchetting in Cross-Ply Laminates: An

Analytic Model

Under the current shear-lag formulation, once the fiber/matrix interface com-

pletely debonds, the residual strain upon unloading becomes constant, and there-

fore, the analysis is unable to capture the strain ratchetting behavior observed dur-

ing experimental fatigue tests of cross-ply ceramic matrix composites. However, as

observed with the unidirectional model, the ratchetting behavior can be modeled

simply by augmenting the assumed fiber stress by a constant amount Ao(N). In

this manner, the stress-strain hysteresis loops continue to "march out" as observed

experimentally. In addition, a closed-form solution for Aot(N) can be found if a

permanently bonded region (PBR) is introduced into the analysis. The formulation

of Ao(N) is provided in this appendix, and it is presented in three steps.

H.1 Formulation of Au(N)

The first part of the analysis lies in determining the residual fiber/matrix con-

stituent stresses, Of(x) and um(x), within the 0' ply. These stresses will differ from

those presented in chapter three due to the assumed PBR. The second step of the

analysis involves augmenting the aforementioned stress fields such that the predicted

matrix strain equals the matrix strain which is known to exist for a debonded in-

terface. Finally, the stress Au(N) is determined through examination of the fiber

stress as the PBR vanishes. These three steps are now considered.

H.1.1 Residual Constituent Stresses in the Modified Unit-Cell. During

loading, since -/ is fixed, the interfacial shear ri(x) at x = ±-yL/2 may exceed the

ultimate bond strength of the interface, r7jt, i.e. rT (+-yL/2) > Tut. Let "ujt, -

ri (--L/2) and ujtr - ri (-L/2) define these maximum shear stresses. Then from
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Eq. (F.29), it may be shown that

ut -- rf c3Ocosh (0/L/2) - c4 /3sinh (%}L/2) + cosh (L/2)sinh (Axt)=- }L/2
(H.1)

and

.ut' = c3 0 cosh ( ±L/2) + C sinh (0L/2) + sinh (Axt, X=_ )
(H.2)

where
Xi + Xr (H.3)

2 cosh (PyL/2)'

4 X -(H.4)
C4 :2 sinh (/3yL/2)'

cosh ( -A = )
X1 = cr - cosh (ALt/2) -0 (11.5)

cosh (A %=Or) (H.6)f = - cosh (ALt/2)

al b + d- d (Xtl - 2-ri(1 - -y)L/2, (H.7)

1 {b+d d _2f - -a- 2Uw-i(l -'-y)L12. (H.8)

Furthermore, since slip is not permitted within the bonded region, ri(--7L/2) = TIt,

and 7-i(yL/2) ='kltr during unloading. Now if

{(-L/2)} - (1 D) { b- - T Xt ) (C.31)

and

{(L/2)} -v(1 D) { b a -- d rT( (C.32)
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then the fiber stress within the unit-cell is given by Eqs. (H.9) through (H.11).

f (x) = {(-L/2)} + -' (L/2 + x) + C1  for x C [-L/2, -- /L/2] (H.9)

T7cosh (Axtl1 =) ofrx€['//, L2

a (x) =6 3 sinh(p3x)+ 4cosh(/3x)+ osh(AL/2) +o for x E [-7L/2,yL/2]

(H.10)27-i

af (x) ={(L/2)} + -- (L/2 - x) + C, for x C ['yL/2, L/2] (H.11)
rf

where
T/"cosh (A'Xt,=_LI2)

C1  - 3 sinh (P yL/2) + 4cosh (PyL/2) + cosh (Atx/2) + 0
-

- 2iL/2(1 - y) - {(-L/2)} (H.12)
rf

C = 6sinh (P /L/2) + C4 cosh (0-yL/2) + cosh (xt L/2) + Oro

cosh (ALt/2)
2-i L/2(1 - -y) - {(L/2)} (H.13)
rX

2 cosh (/3yL/2) (1.14)

Xl-r

4 = 2 sinh (3yL/2) (H.15)

2".I, Tsinh (Ax )=_.yL/2)
; = 3{ rf cosh (ALt/2) (H.16)

1 2 u.It T sinh (Axt lx=)L/)

Xr = -- cosh(ALt/2) (1. 17)
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Because the constituent stresses upon unloading are desired, Eqs. (H.9) through (H.17)

are evaluated at a = ami,. Finally, the matrix stress within the unit-cell may be

determined using Eqs. (H.9) through (H.11) and the standard equilibrium relations.

The matrix stress is provided below. Note that these are the stresses which result

upon unloading and where a PBR is considered.

am(X) -1 (L/2 + x) + (1 d "T ) T( i

for x e [-L/2, -7L/2]
(H.18)

am ~ {X = I b +d U-d } +vf ] 1a()
m(x) vm(1 - D) b- b( XYTlxI) vm (H.19)

for x E [--yL/2, 0]

aUm(X) vm( D) b d - gT (Xt=x) + - {Cr - af(x)}vl-D) b bvm (H.20)
for x E [0,yL/2]

m(x) = 2 r) vm(1 D D) b[T (Xt=) - T (xtL12)]
for x C [-/L/2, L/2]

(H.21)

where If(x) is the fiber stress defined by Eq. (H.10). As observed in the unidirec-

tional analysis, the matrix strain resulting from Eqs. (H.18) through (H.21) is in

disagreement with the known magnitude for a completely debonded, fully slipped,

interface after unloading. Hence, the next step in the analysis is to adjust the

constituent stresses within the unit-cell to ensure that the desired matrix strain is

predicted.

H.1.2 Re-Evaluating the residual strain. For a completely debonded inter-

face, the expected matrix stress upon unloading is as shown in Eqs. (H.22) and (H.23)

for the current shear-lag formulation. In addition, Eqs. (H.22) and (H.23) represent
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the desired, or "correct", matrix stresses (i.e. - 0), and are evaluated at a = ain.

1 dU (r ) v 2ri(L/2+x )
am(x) = vm(1 - D) b fT (Xtlx=) -T vxi1 1 ) V 2 r)

for x G [-L/2,0]

(H.22)

rm) W 1 d {T (XtI.) (-U LTX )l } L12 27-i (L/2 - x)
vm(1 - D) b vm rf (H.23)

for x E [0, L/2]

As in the previous unidirectional case, the matrix stress can be appropriately ad-

justed by a constant amount Aam so that the matrix strain is correct, i.e.

1 L/2( . 4

Aa=m - L/2 {am () - am 2 (x)} dx m (H.24)

where a,, (x) is the matrix stress in Eqs. (11.22) and (11.23) and am2(X) is the. matrix

stress in Eqs. (H.18) through (H.21). The final step of the analysis is to consider the

axial fiber stress as the permanently bonded region vanishes.

H.1.3 Removal of the PBR Constraint. Given Eq. (H.24), an equivalent

crack opening displacement b(N), as discussed in appendix G, may be formulated

from Eq. (H.25).

6(N) =- j' W (x) - (L/2 - x) dx (H.25)

Moreover,

6(N) = L Au(N), (G.2)

Aa(N) ---' Aam. (11.26)
VH
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The stress Ao(N) may finally be determined by equating Eqs. (H.25) and (G.2) and

allowing y/ -* 0. After much algebraic manipulation,

Aa(N)= b + d 1 {9max -min} - fa0 - am 2,i (N) L
b vf( - D) ~fmax f rf

d 1 1 -cosh (t2) + cosh xt=
b cosh (ALt/2) vf (1- D) 2 (AxL/)(1t)1 E (Ef) ~+

+- cosh xt.= - cosh T . (5.1)

The reader may verify that upon removal of the 900 plies, Eq. (5.1) reduces to the

unidirectional case [Eq. (4.3)].
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Appendix L Closed-Form Estimates for Several Laminate Constants.

The shape of the uniaxial stress-strain response for a unidirectional ceramic-

matrix laminate is a good indicator of the extent of damage within the composite

microstructure, and as such, the ability to predict the stress-strain behavior numer-

ically is important for characterizing the residual (remaining) strength and modulus

of a CMC component. For the methodology formulated as part of the current doc-

toral research, the unidirectional stress-strain response may be determined and is

dependent on the basic constituent properties, F; the frictional shear along the

interface, 7-i; the operating and processing temperature differential, AT; the fiber

volume fraction, vf, and the extent of composite damage (L, d and D) according to

Eq. (1.1).

c (Fc, ri, AT, vj, L, d, D) r (I.1)

where F {Ef, af, Gf, Ema, am, Gm} and .F() is some constitutive relation re-

lating these various parameters, e.g. Eq. (3.6). Moreover, based upon the assumed

failure criteria used in the current analysis for the different damage modes, Eq. (1.1)

can be written as a function of the interface strength, T It; the critical energies, Urm

and Ucr,, and the Weibull modulus 7", i.e.

c .F(F,, AT, vf, Ti, Tut, Ucm, Ucrf, 7n) a. (1.2)

Clearly, the parameters Ti, T,,Ut, F,, AT, and vf are material and processing constants

which can be chosen to optimize the composite's behavior for a given application.

This is not as apparent with the remaining parameters Urm, UCTJ, and in. However,

based upon the definitions of U,,m, U,,,, and rin, Eq. (1.2) can be written as shown

in Eq. (1.3) in which all the required parameters can be determined analytically.

c .(o , 7i2, uf f, F,) or (1.3)
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where F is the set of known material and processing constants: 1,, 7i, 7-ut, AT, and

vf. The stress at which fiber fracture is assumed to initiate is aff. The purpose of

this appendix is to provide closed-form estimates for these parameters based upon the

known properties (e.g. Fe); in turn, making the current analysis completely analytic.

Both unidirectional and cross-ply laminates are investigated. Note that the stress-

strain plots presented in earlier chapters are generated using Eq. (1.3) in which a,,

and fin were empirically derived.

L1 Unidirectional Laminates

For analysis purposes, it is convenient to divide the stress-strain curve of a

unidirectional laminate into regions which can be characterized by dominant damage

modes (e.g. matrix cracking and fiber failure). Figure 1.1 represents such a procedure

and is provided to help define some of the terms typically used when segmenting the

stress-strain curve. Schematic drawings of laminates with corresponding degrees of

damage are also illustrated in this figure. Matrix cracking, interface debonds, and

fiber fractures are all shown. The high-lighted stresses in this figure are defined as

follows.

omc -- crack initiation stress

a - critical composite stress

u --+ stress at which matrix cracking ceases (saturation stress)

aff- stress corresponding to the initiation of fiber fracture

aolt --+ultimate laminate stress

C -u ultimate laminate strain

Note that the stresses O'r and off appear explicitly in Eq. (1.3). Furthermore, since m

is dependent on some of the remaining terms shown in Fig. 1. 1, a clear understanding

of the above definitions will prove helpful in the remaining discussion.
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Figure 1.1 Unidirectional stress-strain response and corresponding damages.
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Procedures for estimating these parameters (Ocr, ff, and 7a) are now provided.

As presented in the next section, there is an abundance of formulae for estimating

the critical composite stress, O',. Unfortunately, as is often the case when multiple

solutions are presented, none of the solutions represent a universal answer.

.1.1 Critical Composite Stress. The critical composite stress, a,,, may

be estimated using either the energy balance solutions similar to ACK or the stress

intensity approaches such as MCE (reference chapter two). For the energy balance

solutions, the condition for matrix cracking is determined by ensuring that the forma-

tion of the matrix cracks is energetically consistent. This requires that the energies

before and after crack formation satisfy Eq. (1.4)

AU- AW =g (1.4)

where AU is the change in internal energy and AW is the work done during crack

formation. The classical solution, as originally derived by ACK, is

{127,m V2TiEf Ef }
1/3

rc vmrE (A.21)

Equation (A.21) is derived in chapter two, and represents an estimate for or> based

upon a unit-cell with a fully debonded interface and no thermal stresses.

More recently, Kuo considered a similar analysis using the shear-lag model in

which both residual thermal stresses and a partially bonded interface were considered

[103]. The energies considered in the analysis were the fracture surface energy (U),

the fiber/matrix debonding energy (Udb), the energy dissipated due to frictional

interface fiber sliding (Us), the fiber strain energy increment (AUf), the decrease

in matrix strain energy (AU,), and the work done by external load (AW). For

two-constituent composites which fail only after multiple fractures, the relationship
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among these terms is

Uc + Udb + Us + AUf <_ AU,, + AW (1.5)

where

U, = 2v7Um(R 2 - r 2) = Amgm, (1.6)

Ubd= 8 lrydbrfd = 27rrf " 2d. g', (1.7)

L/2
U, = 47rrfr i L/ d[Auif(x) - Atm(x)] dx, (1.8)

A~~~s rL/2

AU- 7_L/2(2x)- U2(x)] dx, (1.9)2Ef-lIf

AUm = 7r(R 2 - r2) L/2 [ 2 _ d(1
AW f j _L/ 2  M - (x) ] dx, (I.11)

7r-R 2 or L/2
AW =- I' [afs(x) - oZ. (].dx)

Ef _L/2

Substituting these equations into Eq. (1.5), the following general relation for the crit-

ical composite stress may be found. The solution for o,, is determined by searching

for the lowest stress satisfying Eq. (1.12).
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Vm d Ti El [(f 2 '\d Vf Ti (1 2d~ ~22-/- + 47db 4- Tmo _TLJ -- L - - d d
Vf rf rf EmEfvf [ vm rf 2 vm rf (2 3

+~ [ ((vjm O - 2dT ) 2tanh (#[L/2 d]) - af0d) afo
(yi 2\ 2rf L/# ith/rI~~

+ (vm. 2 dri) 2 L/2d])
Vf rfr 2cosh' (O[L/2_- ) ' n2]

_ 2 

/4 2-di 
4

+vf vf rfr~ 3 d

v m -d + (mo --2
vE,2 Vm rf ]Vm rf

tanh (03[L/2 -d]) -mo -2 v-Thd) 2  cs 2 (d[/ ])-(~)v rf 2 2cosh (O[n/2 - 3 (v,.J r
+ v o) d +- 1-v dri tanh (/3 [L/2 - d]) - -d (1.12)

Ef vf (Vina # + f rf (rum I d~)

Although the general solution of the critical stress can only be determined numer-

ically, closed-form solutions exist for two limiting cases. The first case assumes a

perfectly bonded fiber (d = 0) and an infinite crack spacing (L = c0). The second

limiting case is for a completely debonded interface (d = L/2). The solutions for

these two cases are as shown below.

For a completely bonded interface,

( -ymElEfVf) 1/2 - EI(a I - Oam)AT (1.13)

and for a fully debonded interface

(2 1- El(a, - am)AT. (1.14)
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Note that the latter is the ACK solution with an additional term accounting for the

thermal stresses.

Budiansky et al also considered some related cases. In particular, fully bonded

and partially bonded solutions were obtained for the conditions of steady-state crack

growth [20]. Their solutions are shown below.

For a fully bonded interface,

EI(f- am)AT { 6v2Ef }1/4 27__.
O'cr 4 vm.Em, lv2E flV)J r (1.15)

1 + vf = M v m) Vr Em

where
2E v 3  1/4

= -6 In v- 3v(3 - v (.16)

For a partially bonded interface,

1 +4 vf d Y1db

0cr + EI(+ - om)AT vm rf /jm (1.17)
+ VMEM - 6E1

v1 E 
J rf

where o is the right hand side of Eq. (1.15).

Several solutions for a,, have been presented using the stress intensity ap-

proaches [127, 129, 196]. References 127 and 129 represent closed-form solutions

whereas Reference 196 is a numerical approximation. For brevity, only the MCE

solution is provided below.

a,.r _ 1 (a 1/2 + 2(a)1/4 (1.18)

am 3 cmI 3 cm

where

Cm (\ K (I.19)
a J
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3m ((f a2/ (1.20)

K Km (1.21)

8riv2Ef(l - v)
= fvmEmr.22)

Km= 2F2-Em (1.23)

J = 1.2 (1.24)

Several estimates for the critical composite stress are shown in Table 1.1. In

particular, estimates are shown for the original ACK solution; Kuo's solutions for

a completely debonded (db) and fully bonded (bd) interface; the partially bonded

(part. bd) and fully bonded solutions of BHE, and the MCE solution. The results

were generated with Eqs. (A.21) through (1.18), and the material property data list

in Table 1.2. These data are for a SiC/CAS composite. Kuo's debonded solution

[Eq. (1.14)] does the best job of matching the empirical value of 200 MPa for Urcr.

In general, however, the estimates grossly over predict a,,. This can, in part, be at-

tributed to the uncertainties in several of the assumed material constants. Figure 1.2

illustrates how the critical stresses varies with the constants 7, and rT as predicted

by Eqs. (A.21) and (1.14). The values 'y, = 20 N/rn and ri = 20 MPa correspond

to the monolithic matrix surface energy and the push-out estimate, respectively and

as observed previously, these seem to overestimate the laminate values.

Table 1.1 Critical composite stress estimates.
ACK Kuo (db) Kuo (bd) BHE (part. bd) BHE (bd) MCE
404.8 293.0 -111.5 1912.0 1028.0 2.1E15

L1.2 Weibull Modulus. As presented in appendix F, the Weibull modulus,

rh which governs the progression of fiber fractures, can be determined by fitting
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Table 1.2 Input Parameters.
Ef 210 GPa Em 95.5 GPa
Vf 0.38 rf 7.5 pm
af 3.1E-6 /C am 4.5E-6 /°C
AT -1000 °C
'i 20 MPa T- zt 220 MPa

Gf 65 GPa Gm 38 GPa
ui 0.2 vm 0.2
d 60E-6 mm a 2 rf
7m 20 N/rn 7db 7m/3

empirical stress-strain data. However, 7n may also be calculated from Eq. (F.17) if

the critical fraction of broken fibers, D*; the critical fiber strain energy, U,,1 , and

the average fiber strain energy at laminate failure, U*, are known.

In Iln (I- 1D I
ln 1=-(1  )} (F.17)

ln{1~ Uc }

Based on this relation, formulae relating D*, UTJ and U; are desired. These are now

investigated.

The critical fraction of broken fibers, D*, is related to the traditional Weibull

shaping parameter, m, and the composite's ultimate stress, Oulit via the following two

equations [14,163].

D* 2 (F.16)mn+2

O~ut~vsm 1 2 _____1/(mn+l1) (1.25)
aut Vf C m+2 rnm+2

where S, is a characteristic fiber strength. Further, two of the three parameters cult,

rn, and/or S, are assumed to be known laminate properties and are now included

in the definition of F. The remaining terms, U?,, and U;, are both based on the
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Figure 1.2 Critical composites stress (a,,) as a function of the matrix surface energy
(7im) and/or the interface shear stress (Ti).

average fiber strain energy, which from Eq. (3.45), is defined as follows.

A1  [(Tivfd)2(H + 4/0d/3) - vjrf id(20jd + uovmH +4v afoG)
Uf = v 2r 2 OEf

f f

+2vfvmr2afomoG + 1-P(vfrf o.)2 (L - 2d) + Pd(rf )2

+ 1 /4(vmrf fmo)2H] (1.26)

where G = tanh [/(L/2 - d)] and

H =(L - 2d) + sinh[/3(L - 2d)] (E.10)

cosh [P(L/2 - d)] 2

As with the matrix strain energy, Eq. (1.26) can be expressed as the sum of the fiber

strain energy for an undamaged laminate, Ufo, and an additional term, Uf(L, d),
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which accounts for the energy transferred between the constituents because of the

damage, i.e.

Uf = Ufo + Uf(L,d). (1.27)

In this manner, Uc,, and U1 can be defined by the following.

Uc,f {U f + Uf (Lff, df f)}l f (1.28)

U; = {Uo + Uf (L*,d*)}I = Ot (1.29)

where Lff and dff are the crack spacing and debond length at o = f f and L* and d*

are the corresponding lengths evaluated at a = u,,It. Based upon Eqs. (1.28) and (1.29),

the estimate for ri requires first calculating Lff, dff, caff, L*, and d*. The first three

parameters can be determined from Eqs. (3.117) and (3.2.2) since under the current

analysis, of f is defined as the stress at which a maximum or saturated crack density

is obtained for D = 0, and is therefore known directly. Furthermore, by definition,

L* = Ls,,t, and, as such, can be approximated by Eq. (1.30) [8, 37,179].

L* 1.337 rf vmEl -Ef( a (1.30)

Finally, it is reasonable to suspect that at composite failure, the interface is com-

pletely debonded and, therefore,

d*= 1* (1.31)
2

Based on Eqs. (F.17) through (1.31), the previous constitutive relation, Eq. (1.3),

can be written as

(1.32)
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where F= {E 1 , Em, af, am, G, Gm, AT, vf, 77, T, t, 7ult, 7n, 7m, .

Equation (1.32) is the desired solution in which the composites strain in a function

solely of the applied stress and known laminate properties.

1.2 Cross-Ply Laminates

As with the unidirectional laminate, it is convenient to segment the stress-strain

curve for the cross-ply laminate into regions characterized by the various modes of

failure. To help define some of the relevant terms, Fig. 1.3 is provided. This figure

also illustrates several laminates with appropriate damages. The stresses labeled in

Fig. 1.3 are defined as follows:
r90

cr -* critical composite stress for the 900 plies
90

rsa t -* saturation stress for the 900 plies

ormc -* crack initiation in the 0' plies
0

O --* critical composite stress for the 90' plies
0

rsat - saturation stress for the 90' plies

rf-* stress corresponding to the initiation of fiber fracture

orult --+Ultimate laminate stress
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As with the unidirectional laminate, estimates for the critical stresses; final

damage configuration, and ultimate laminate stresses are required for the complete

analytical analysis. These are now investigated.

L2.1 Critical Composite Stress. Due to their orientation, the fibers of

the 900 plies do not contribute much to the strength of the laminate. As a result,

the transverse plies may be modeled as a monolithic ceramic. Furthermore, it is

reasonable to suspect that failure can be predicted using a maximum stress criterion.

Hence, oCT, may be estimated from Eq. (1.33).

E90 - E, - E2(ac - a 2)AT (1.33)
'cr E 2-- t-

The latter matches well with empirical data [123].

The critical stress in the 0' plies, a.., may again be determined from Eq. (1.5).

However, for a general damage state, the energy and work terms in this equation

must be determined numerically. Kuo, however, presents the results for a few discrete

cases in which the damage state within the composite is assumed symmetric and

predictable [103]. For example, if at a = ac, only a single crack which extends

throughout the entire laminate cross-section is assumed to exist then

o _ b (/?mE1Efvf )1/2 b b E( -m)AT.
C b+d Em b+d - (.34)

If the fiber/matrix interface is assumed to be debonded then

o b (12rmEiEfv)1/3 b- dEl (o - m)AT. (1.35)
b + b~d E, b b+-
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Finally, if only damage within the 00 ply is assumed then

00 (12Ti7YmE. (bvfEf + dE 2)1 /3 l1± +F +F 2  b1/3 El(ajam)AT

cr rfvmEfE2b(b + d) (1 + 2r, + 2r,172 ) b + d

(1.36)

where F, = (dE 2)/(bEx) and F2  (vmEm)/(vfEf).

An alternate solution is presented by Evans et al [53]. The solution, as appears

in Eq. (1.37), represents a lower bound for the critical stress.

0 = Ec 'y thEL + ET
c' g 0 (1.37)

gt 2ET

The parameters, EL and ET, are the ply modulus in the longitudinal and transverse

directions, respectively. Further, t is the ply thickness and g is a function ranging

between 1/3 and 2/3 [53].

L2.2 Weibull Modulus. Estimation of the Weibull Modulus requires that

the ultimate composite stress, aojt, and the final damage configuration, LT, L, d,

and D be known. Estimates are provided by Evans et al [53,54].
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